Review
BibTex RIS Cite

Polymer-Based Transfection Agents Used in CRISPR-CAS9 System

Year 2022, Volume: 11 Issue: 1, 151 - 156, 25.03.2022
https://doi.org/10.46810/tdfd.795053

Abstract

Genome editing is a method used to make desired changes in the target gene. Today, various methods are used for genome-editing studies; among them, one of the most widely used methods is the clustered, regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated (Cas) genes and their corresponding CRISPR sequences constitute CRISPR-Cas systems. Due to its simplicity, it is likely that the CRISPR–Cas system could be used effectively in ex vivo gene therapy studies in humans. If this happens, the importance of CRISPR carrier systems will gradually increase. Viral and non-viral systems are used as delivery modalities in genome-editing studies. It has been proven that nanoparticles are the most promising tools for gene therapy due to their adjustable size, surface, shape, and biological behaviours. The polymeric carrier system has become the main non-viral substitute for gene delivery due to its reduced immunogenicity and pathogenicity. In this review, information about current studies related to polymeric carriers used in non-viral CRISPR delivery systems is presented.

References

  • 1. Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. Epub 2013/05/15. doi: 10.1016/j.tibtech.2013.04.004.
  • 2. Puchta H. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol. 2017;36:1-8. Epub 2016/12/04.
  • 3. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants. 2017;3:17018.
  • 4. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1.
  • 5. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
  • 6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12.
  • 7. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33. Epub 1987/12/01. doi: 10.1128/jb.169.12.5429-5433.1987.
  • 8. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol. 2018;200(7). Epub 2018/01/24.
  • 9. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-6.
  • 10. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722-36..
  • 11. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119-28.
  • 12. Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nat Commun. 2019;10(1):3001.
  • 13. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997.
  • 14. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40-6.
  • 15. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78.
  • 16. Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28(7-8):247-61.
  • 17. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222-9.
  • 18. Oude Blenke E, Evers MJ, Mastrobattista E, van der Oost J. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. J Control Release. 2016;244(Pt B):139-48..
  • 19. Timin AS, Muslimov AR, Lepik KV, Epifanovskaya OS, Shakirova AI, Mock U, et al. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine. 2018;14(1):97-108.
  • 20. Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther. 2015;26(7):452-62. Epub 2015/07/16. doi: 10.1089/hum.2015.069.
  • 21. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. 2001;53(9):1169-74. Epub 2001/10/02. doi: 10.1211/0022357011776603.
  • 22. Burks J, Nadella S, Mahmud A, Mankongpaisarnrung C, Wang J, Hahm JI, et al. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer. Cell Mol Gastroenterol Hepatol. 2018;6(1):17-32.
  • 23. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014;588(21):3954-8.
  • 24. Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy. Hum Gene Ther. 2015;26(7):443-51.
  • 25. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328-33.
  • 26. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective. Hum Gene Ther. 2015;26(5):257-65.
  • 27. Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng. 2015;17:63-89.
  • 28. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, et al. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep. 2014;4:4513.
  • 29. Remy S, Chenouard V, Tesson L, Usal C, Menoret S, Brusselle L, et al. Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci Rep. 2017;7(1):16554.
  • 30. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538(7624):183-92.
  • 31. Hyland KA, Aronovich EL, Olson ER, Bell JB, Rusten MU, Gunther R, et al. Transgene Expression in Dogs After Liver-Directed Hydrodynamic Delivery of Sleeping Beauty Transposons Using Balloon Catheters. Hum Gene Ther. 2017;28(7):541-50.
  • 32. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295-320.
  • 33. Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol. 2018;36(9):882-97.
  • 34. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17-26. Epub 2017/09/16.
  • 35. Su C, Liu Y, He Y, Gu J. Analytical methods for investigating in vivo fate of nanoliposomes: A review. J Pharm Anal. 2018;8(4):219-25.
  • 36. Hill AB, Chen M, Chen CK, Pfeifer BA, Jones CH. Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors. Trends Biotechnol. 2016;34(2):91-105.
  • 37. Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2017;79:917-29.
  • 38. Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, et al. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine. 2018;14(7):2095-102.
  • 39. Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond). 2019;14(15):2083-100.
  • 40. Chen K, Hong Y, Li Z, Wu YL, Wu C. Cationic polymeric nanoformulation: Recent advances in material design for CRISPR/Cas9 gene therapy. Progress in Natural Science: Materials International. 2019;29:617-627.
  • 41. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-57.
  • 42. Li L, Song L, Liu X, Yang X, Li X, He T, et al. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. ACS Nano. 2017;11(1):95-111.
  • 43. Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, et al. A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules. 2018;19(7):2957-68.
  • 44. Zhang Z, Wan T, Chen Y, Chen Y, Sun H, Cao T, et al. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromol Rapid Commun. 2019;40(5):e1800068.
  • 45. Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance. Bioconjug Chem. 2017;28(4):957-67.
  • 46. Zhu D, Shen H, Tan S, Hu Z, Wang L, Yu L, et al. Nanoparticles Based on Poly (beta-Amino Ester) and HPV16-Targeting CRISPR/shRNA as Potential Drugs for HPV16-Related Cervical Malignancy. Mol Ther. 2018;26(10):2443-55.
  • 47. Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, et al. Carboxylated branched poly(beta-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5(12):eaay3255.
  • 48. Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun. 2018;9(1):4092.
  • 49. Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J Pharm Sci. 2016;105(2):460-75.
  • 50. Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated Chitosan for Nonviral Aerosol and Mucosal Delivery of the CRISPR/Cas9 System in Vitro. Mol Pharm. 2018;15(11):4814-26.

CRISPR-CAS9 Sisteminde Kullanılan Polimer Bazlı Transfeksiyon Ajanları

Year 2022, Volume: 11 Issue: 1, 151 - 156, 25.03.2022
https://doi.org/10.46810/tdfd.795053

Abstract

Genom düzenleme, hedef gende istenilen değişiklikleri yapmak için kullanılan bir yöntemdir. Günümüzde genom düzenleme çalışmaları için çeşitli yöntemler kullanılmaktadır; bunlar arasında en yaygın kullanılan yöntemlerden biri kümelenmiş, düzenli aralıklarla yerleştirilmiş kısa palindromik tekrarlardır (CRISPR). CRISPR ile ilişkili (Cas) genleri ve bunlara karşılık gelen CRISPR dizileri, CRISPR-Cas sistemlerini oluşturur. Basitliği nedeniyle, CRISPR-Cas sisteminin insanlarda ex vivogen terapisi çalışmalarında etkili bir şekilde kullanılmaya başlanmıştır veCRISPR taşıyıcı sistemlerin önemi giderek artmaktadır.Genom düzenleme çalışmalarında dağıtım yöntemleri olarak viral ve viral olmayan sistemler kullanılmaktadır. Nanopartiküllerin ayarlanabilir boyutları, yüzeyleri, şekilleri ve biyolojik davranışları nedeniyle gen terapisi için en umut verici araçlar olduğukanıtlanmıştır. Polimerik taşıyıcı sistem, azaltılmış immünojenisitesi ve patojenitesi nedeniyle gen aktarımı için viral olmayan ana ikame haline gelmiştir. Bu derlemede, viral olmayan CRISPR dağıtım sistemlerinde kullanılan polimerik taşıyıcılarla ilgiligüncel çalışmalar hakkında bilgiler sunulmaktadır.

References

  • 1. Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. Epub 2013/05/15. doi: 10.1016/j.tibtech.2013.04.004.
  • 2. Puchta H. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol. 2017;36:1-8. Epub 2016/12/04.
  • 3. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants. 2017;3:17018.
  • 4. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1.
  • 5. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
  • 6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12.
  • 7. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33. Epub 1987/12/01. doi: 10.1128/jb.169.12.5429-5433.1987.
  • 8. Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J Bacteriol. 2018;200(7). Epub 2018/01/24.
  • 9. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-6.
  • 10. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722-36..
  • 11. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119-28.
  • 12. Liu TY, Liu JJ, Aditham AJ, Nogales E, Doudna JA. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble. Nat Commun. 2019;10(1):3001.
  • 13. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997.
  • 14. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40-6.
  • 15. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78.
  • 16. Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome. 2017;28(7-8):247-61.
  • 17. Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222-9.
  • 18. Oude Blenke E, Evers MJ, Mastrobattista E, van der Oost J. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. J Control Release. 2016;244(Pt B):139-48..
  • 19. Timin AS, Muslimov AR, Lepik KV, Epifanovskaya OS, Shakirova AI, Mock U, et al. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine. 2018;14(1):97-108.
  • 20. Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther. 2015;26(7):452-62. Epub 2015/07/16. doi: 10.1089/hum.2015.069.
  • 21. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. 2001;53(9):1169-74. Epub 2001/10/02. doi: 10.1211/0022357011776603.
  • 22. Burks J, Nadella S, Mahmud A, Mankongpaisarnrung C, Wang J, Hahm JI, et al. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer. Cell Mol Gastroenterol Hepatol. 2018;6(1):17-32.
  • 23. Cheng R, Peng J, Yan Y, Cao P, Wang J, Qiu C, et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014;588(21):3954-8.
  • 24. Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy. Hum Gene Ther. 2015;26(7):443-51.
  • 25. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328-33.
  • 26. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective. Hum Gene Ther. 2015;26(5):257-65.
  • 27. Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng. 2015;17:63-89.
  • 28. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, et al. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep. 2014;4:4513.
  • 29. Remy S, Chenouard V, Tesson L, Usal C, Menoret S, Brusselle L, et al. Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci Rep. 2017;7(1):16554.
  • 30. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538(7624):183-92.
  • 31. Hyland KA, Aronovich EL, Olson ER, Bell JB, Rusten MU, Gunther R, et al. Transgene Expression in Dogs After Liver-Directed Hydrodynamic Delivery of Sleeping Beauty Transposons Using Balloon Catheters. Hum Gene Ther. 2017;28(7):541-50.
  • 32. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295-320.
  • 33. Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol. 2018;36(9):882-97.
  • 34. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17-26. Epub 2017/09/16.
  • 35. Su C, Liu Y, He Y, Gu J. Analytical methods for investigating in vivo fate of nanoliposomes: A review. J Pharm Anal. 2018;8(4):219-25.
  • 36. Hill AB, Chen M, Chen CK, Pfeifer BA, Jones CH. Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors. Trends Biotechnol. 2016;34(2):91-105.
  • 37. Lim J, You M, Li J, Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C Mater Biol Appl. 2017;79:917-29.
  • 38. Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, et al. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine. 2018;14(7):2095-102.
  • 39. Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond). 2019;14(15):2083-100.
  • 40. Chen K, Hong Y, Li Z, Wu YL, Wu C. Cationic polymeric nanoformulation: Recent advances in material design for CRISPR/Cas9 gene therapy. Progress in Natural Science: Materials International. 2019;29:617-627.
  • 41. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234-57.
  • 42. Li L, Song L, Liu X, Yang X, Li X, He T, et al. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. ACS Nano. 2017;11(1):95-111.
  • 43. Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, et al. A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules. 2018;19(7):2957-68.
  • 44. Zhang Z, Wan T, Chen Y, Chen Y, Sun H, Cao T, et al. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromol Rapid Commun. 2019;40(5):e1800068.
  • 45. Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance. Bioconjug Chem. 2017;28(4):957-67.
  • 46. Zhu D, Shen H, Tan S, Hu Z, Wang L, Yu L, et al. Nanoparticles Based on Poly (beta-Amino Ester) and HPV16-Targeting CRISPR/shRNA as Potential Drugs for HPV16-Related Cervical Malignancy. Mol Ther. 2018;26(10):2443-55.
  • 47. Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, et al. Carboxylated branched poly(beta-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5(12):eaay3255.
  • 48. Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun. 2018;9(1):4092.
  • 49. Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J Pharm Sci. 2016;105(2):460-75.
  • 50. Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated Chitosan for Nonviral Aerosol and Mucosal Delivery of the CRISPR/Cas9 System in Vitro. Mol Pharm. 2018;15(11):4814-26.
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering, Health Care Administration
Journal Section Articles
Authors

Rizvan İmamoğlu 0000-0002-6306-4760

Özlem Kaplan 0000-0002-3052-4556

Mehmet Koray Gök 0000-0003-2497-9359

İsa Gökçe 0000-0002-5023-9947

Publication Date March 25, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA İmamoğlu, R., Kaplan, Ö., Gök, M. K., Gökçe, İ. (2022). Polymer-Based Transfection Agents Used in CRISPR-CAS9 System. Türk Doğa Ve Fen Dergisi, 11(1), 151-156. https://doi.org/10.46810/tdfd.795053
AMA İmamoğlu R, Kaplan Ö, Gök MK, Gökçe İ. Polymer-Based Transfection Agents Used in CRISPR-CAS9 System. TJNS. March 2022;11(1):151-156. doi:10.46810/tdfd.795053
Chicago İmamoğlu, Rizvan, Özlem Kaplan, Mehmet Koray Gök, and İsa Gökçe. “Polymer-Based Transfection Agents Used in CRISPR-CAS9 System”. Türk Doğa Ve Fen Dergisi 11, no. 1 (March 2022): 151-56. https://doi.org/10.46810/tdfd.795053.
EndNote İmamoğlu R, Kaplan Ö, Gök MK, Gökçe İ (March 1, 2022) Polymer-Based Transfection Agents Used in CRISPR-CAS9 System. Türk Doğa ve Fen Dergisi 11 1 151–156.
IEEE R. İmamoğlu, Ö. Kaplan, M. K. Gök, and İ. Gökçe, “Polymer-Based Transfection Agents Used in CRISPR-CAS9 System”, TJNS, vol. 11, no. 1, pp. 151–156, 2022, doi: 10.46810/tdfd.795053.
ISNAD İmamoğlu, Rizvan et al. “Polymer-Based Transfection Agents Used in CRISPR-CAS9 System”. Türk Doğa ve Fen Dergisi 11/1 (March 2022), 151-156. https://doi.org/10.46810/tdfd.795053.
JAMA İmamoğlu R, Kaplan Ö, Gök MK, Gökçe İ. Polymer-Based Transfection Agents Used in CRISPR-CAS9 System. TJNS. 2022;11:151–156.
MLA İmamoğlu, Rizvan et al. “Polymer-Based Transfection Agents Used in CRISPR-CAS9 System”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 1, 2022, pp. 151-6, doi:10.46810/tdfd.795053.
Vancouver İmamoğlu R, Kaplan Ö, Gök MK, Gökçe İ. Polymer-Based Transfection Agents Used in CRISPR-CAS9 System. TJNS. 2022;11(1):151-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.