Research Article
BibTex RIS Cite

Investigation of Wing Forms Through Mass and Wing Area Chart

Year 2022, Volume: 11 Issue: 2, 107 - 112, 29.06.2022
https://doi.org/10.46810/tdfd.1084396

Abstract

The wing loading parameter depending on the wing area and weight and the aspect ratio parameter, which is the wing shape factor, are the main parameters that determine the fixed-wing flight mechanics. In this study, the relationship between wing forms and flight style of 195 bird species was evaluated using wing area and mass scatter plot. The slope of the mass and wing area chart is proportional to the 1/wing loading. The results showed that birds with more wing area per unit mass tended to perform unpowered flight styles such as soaring and gliding; and birds with less wing area per unit mass tended to have powered flight styles, such as flapping and hovering. In general, it has been found that the slope of the trendline curve is more inclined tended to expend more energy in flight. Unlike the fixed-wing flight mechanics, hand-wings and arm-wings should also be examined to understand the flight mechanics of flapping wings as different effects occur during flapping flight in terms of the lift and thrust forces. In addition, scythe-shaped wings differ from high-speed wings in terms of the ratio of hand wing length/arm wing length according to their wing structure.

References

  • [1] Böker H Die biologische Anatomie der Flugarten der Vögel und ihre Phylogenie. Journal of Ornithology. 1927;75(2), 304-371.
  • [2] Lorenz K. Beobachtetes über das Fliegen der Vögel und über die Beziehungen der Flügel-und Steuerform zur Art des Fluges. Journal of Ornithology. 1933; 81(1), 107-236.
  • [3] Savile D B O. Adaptive evolution in the avian wing. Evolution. 1957; 11(2), 212-224.
  • [4] Rayner, J. M. . Form and function in avian flight. In Current ornithology. Springer, Boston, MA; 1988.
  • [5] Norberg, U. M. Vertebrate flight Springer-Verlag. Berlin, Germany; 1990.
  • [6] Lockwood, R., Swaddle, J. P., & Rayner, J. M. Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. Journal of avian biology. 1998; 273-292.
  • [7] Videler, J. J. Avian flight. Oxford University Press; 2006.
  • [8] Pennycuick, C. J. Measuring birds' wings for flight performance calculations. Bristol: Boundary Layer; 1999.
  • [9] Saarlas, M. Aircraft performance. John Wiley & Sons; 2006.
  • [10] Keast A. Wing shape in insectivorous passerines inhabiting New Guinea and Australian rain forests and eucalypt forest/eucalypt woodlands. Auk. 1996;113: 94 – 104.
  • [11] Kruyt J W, van Heijst G F, Altshuler D L, Lentink D. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface. 2015; 12: 20150051.
  • [12] Henningsson P, Hedenström A, Bomphrey R J. Efficiency of lift production in flapping and gliding flight of swifts. Plos one. 2014; 9(2), e90170.
  • [13] Muijres F T, Henningsson P, Stuiver M, Hedenström A . Aerodynamic flight performance in flap-gliding birds and bats. Journal of theoretical biology. 2012; 306, 120-128.
  • [14] Lilienthal O, Lilienthal G . Birdflight as the Basis of Aviation: A Contribution Towards a System of Aviation. Longmans, Green; 1911.
  • [15] Harmon R L. Aerodynamic modeling of a flapping membrane wing using motion tracking experiments (Doctoral dissertation); 2008.
  • [16] Dvořák R. Aerodynamics of bird flight. In EPJ Web of Conferences. EDP Sciences; 2006.
  • [17] Alerstam T, Rosén M, Bäckman J, Ericson P G, Hellgren O. Flight speeds among bird species: allometric and phylogenetic effects. PLoS biology. 2007; 5(8), e197.
  • [18] Bruderer B, Peter D, Boldt A, Liechti F. Wing‐beat characteristics of birds recorded with tracking radar and cine camera. Ibis. 2010; 152(2), 272-291.
  • [19] Greenewalt C H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Transactions of the American philosophical society. 1975; 65(4), 1-67.
  • [20] Dunning Jr, J. B. CRC handbook of avian body masses. CRC press; 1993.
  • [21] Liu T. Comparative scaling of flapping-and fixed-wing flyers. AIAA journal. 2006; 44(1), 24-33.
  • [22] Mcmasters J. Reflections of a Paleoaerodynamicist. In 2nd Applied Aerodynamics Conference; 1986.
  • [23] KleinHeerenbrink, M., Johansson, L. C., & Hedenström, A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. Journal of The Royal Society Interface. 2017; 14(130), 20170099.
  • [24] Serrano, F. J., & Chiappe, L. M. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. Journal of the Royal Society Interface. 2017; 14(132), 20170182.
  • [25] White, C. M., & Tanner-White, M. Unusual social feeding and soaring by the Common Raven (Corvus corax). Great Basin Naturalist. 1985; 45(1), 21.
  • [26] Videler J J, Stamhuis E J, Povel G D E. Leading-edge vortex lifts swifts. Science. 2004; 306(5703), 1960-1962.
  • [27] Lentink, D., Müller, U. K., Stamhuis, E. J., De Kat, R., Van Gestel, W., Veldhuis, L. L. M., ... & Van Leeuwen, J. L. How swifts control their glide performance with morphing wings. Nature. 2007; 446(7139), 1082-1085.
  • [28] Henningsson, P., Spedding, G. R., & Hedenström, A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. Journal of Experimental Biology. 2008; 211(5), 717-730.
  • [29] Muir, R. E., & Viola, I. M. The leading-edge vortex of swift wings. BioRxiv. 2017; 099713.
  • [30] Wang X, McGowan A J, Dyke G J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS One. 2011; 6(12), e28672.

Kütle ve Kanat Alanı Grafiğinden Kanat Formlarının İncelenmesi

Year 2022, Volume: 11 Issue: 2, 107 - 112, 29.06.2022
https://doi.org/10.46810/tdfd.1084396

Abstract

Kanat alanı ve ağırlığa bağlı olan kanat yükleme parametresi ve şekil faktörü olan en boy oranı parametresi, sabit kanatlı uçuşun mekaniğini belirleyen ana parametrelerdir. Bu çalışmada, 195 kuş türünün kanat formları ile uçuş tarzları arasındaki ilişki, kanat alanı ve kütle dağılım grafiği kullanılarak değerlendirilmiştir. Kütle ve kanat alanı grafiğinin eğimi 1/kanat yüklemesiyle orantılıdır. Sonuçlar, birim kütle başına daha fazla kanat alanına sahip kuşların, süzülme ve süzülme gibi enerji gerektirmeyen uçuş stillerine sahip olma eğiliminde olduğunu göstermiştir; ve birim kütle başına daha az kanat alanına sahip kuşlar, kanat çırpma ve havada asılı kalma gibi enerji gerektiren uçuş stillerine sahip olma eğilimindedir. Genel olarak, daha düşük eğri eğimli kuşların kural olarak uçarken daha fazla enerji harcadıkları belirtilmelidir. Çırparak uçuş sırasında kaldırma ve itme kuvvetlerinin oluşumu açısından farklı etkiler meydana geldiğinden, çırpma kanatlarının uçuş mekaniğini anlamak için sabit kanatlı uçuş mekaniğinin aksine el kanatları ve kol kanatları da incelenmelidir. Ayrıca kanat yapılarına göre tırpan kanatlar, el kanadı uzunluğu/kol kanat uzunluğu oranı bakımından yüksek hızlı kanatlardan farklılık gösterir.

References

  • [1] Böker H Die biologische Anatomie der Flugarten der Vögel und ihre Phylogenie. Journal of Ornithology. 1927;75(2), 304-371.
  • [2] Lorenz K. Beobachtetes über das Fliegen der Vögel und über die Beziehungen der Flügel-und Steuerform zur Art des Fluges. Journal of Ornithology. 1933; 81(1), 107-236.
  • [3] Savile D B O. Adaptive evolution in the avian wing. Evolution. 1957; 11(2), 212-224.
  • [4] Rayner, J. M. . Form and function in avian flight. In Current ornithology. Springer, Boston, MA; 1988.
  • [5] Norberg, U. M. Vertebrate flight Springer-Verlag. Berlin, Germany; 1990.
  • [6] Lockwood, R., Swaddle, J. P., & Rayner, J. M. Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. Journal of avian biology. 1998; 273-292.
  • [7] Videler, J. J. Avian flight. Oxford University Press; 2006.
  • [8] Pennycuick, C. J. Measuring birds' wings for flight performance calculations. Bristol: Boundary Layer; 1999.
  • [9] Saarlas, M. Aircraft performance. John Wiley & Sons; 2006.
  • [10] Keast A. Wing shape in insectivorous passerines inhabiting New Guinea and Australian rain forests and eucalypt forest/eucalypt woodlands. Auk. 1996;113: 94 – 104.
  • [11] Kruyt J W, van Heijst G F, Altshuler D L, Lentink D. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface. 2015; 12: 20150051.
  • [12] Henningsson P, Hedenström A, Bomphrey R J. Efficiency of lift production in flapping and gliding flight of swifts. Plos one. 2014; 9(2), e90170.
  • [13] Muijres F T, Henningsson P, Stuiver M, Hedenström A . Aerodynamic flight performance in flap-gliding birds and bats. Journal of theoretical biology. 2012; 306, 120-128.
  • [14] Lilienthal O, Lilienthal G . Birdflight as the Basis of Aviation: A Contribution Towards a System of Aviation. Longmans, Green; 1911.
  • [15] Harmon R L. Aerodynamic modeling of a flapping membrane wing using motion tracking experiments (Doctoral dissertation); 2008.
  • [16] Dvořák R. Aerodynamics of bird flight. In EPJ Web of Conferences. EDP Sciences; 2006.
  • [17] Alerstam T, Rosén M, Bäckman J, Ericson P G, Hellgren O. Flight speeds among bird species: allometric and phylogenetic effects. PLoS biology. 2007; 5(8), e197.
  • [18] Bruderer B, Peter D, Boldt A, Liechti F. Wing‐beat characteristics of birds recorded with tracking radar and cine camera. Ibis. 2010; 152(2), 272-291.
  • [19] Greenewalt C H. The flight of birds: the significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Transactions of the American philosophical society. 1975; 65(4), 1-67.
  • [20] Dunning Jr, J. B. CRC handbook of avian body masses. CRC press; 1993.
  • [21] Liu T. Comparative scaling of flapping-and fixed-wing flyers. AIAA journal. 2006; 44(1), 24-33.
  • [22] Mcmasters J. Reflections of a Paleoaerodynamicist. In 2nd Applied Aerodynamics Conference; 1986.
  • [23] KleinHeerenbrink, M., Johansson, L. C., & Hedenström, A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. Journal of The Royal Society Interface. 2017; 14(130), 20170099.
  • [24] Serrano, F. J., & Chiappe, L. M. Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution. Journal of the Royal Society Interface. 2017; 14(132), 20170182.
  • [25] White, C. M., & Tanner-White, M. Unusual social feeding and soaring by the Common Raven (Corvus corax). Great Basin Naturalist. 1985; 45(1), 21.
  • [26] Videler J J, Stamhuis E J, Povel G D E. Leading-edge vortex lifts swifts. Science. 2004; 306(5703), 1960-1962.
  • [27] Lentink, D., Müller, U. K., Stamhuis, E. J., De Kat, R., Van Gestel, W., Veldhuis, L. L. M., ... & Van Leeuwen, J. L. How swifts control their glide performance with morphing wings. Nature. 2007; 446(7139), 1082-1085.
  • [28] Henningsson, P., Spedding, G. R., & Hedenström, A. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel. Journal of Experimental Biology. 2008; 211(5), 717-730.
  • [29] Muir, R. E., & Viola, I. M. The leading-edge vortex of swift wings. BioRxiv. 2017; 099713.
  • [30] Wang X, McGowan A J, Dyke G J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS One. 2011; 6(12), e28672.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Seyhun Durmuş 0000-0002-1409-7355

Early Pub Date June 29, 2022
Publication Date June 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Durmuş, S. (2022). Investigation of Wing Forms Through Mass and Wing Area Chart. Türk Doğa Ve Fen Dergisi, 11(2), 107-112. https://doi.org/10.46810/tdfd.1084396
AMA Durmuş S. Investigation of Wing Forms Through Mass and Wing Area Chart. TJNS. June 2022;11(2):107-112. doi:10.46810/tdfd.1084396
Chicago Durmuş, Seyhun. “Investigation of Wing Forms Through Mass and Wing Area Chart”. Türk Doğa Ve Fen Dergisi 11, no. 2 (June 2022): 107-12. https://doi.org/10.46810/tdfd.1084396.
EndNote Durmuş S (June 1, 2022) Investigation of Wing Forms Through Mass and Wing Area Chart. Türk Doğa ve Fen Dergisi 11 2 107–112.
IEEE S. Durmuş, “Investigation of Wing Forms Through Mass and Wing Area Chart”, TJNS, vol. 11, no. 2, pp. 107–112, 2022, doi: 10.46810/tdfd.1084396.
ISNAD Durmuş, Seyhun. “Investigation of Wing Forms Through Mass and Wing Area Chart”. Türk Doğa ve Fen Dergisi 11/2 (June 2022), 107-112. https://doi.org/10.46810/tdfd.1084396.
JAMA Durmuş S. Investigation of Wing Forms Through Mass and Wing Area Chart. TJNS. 2022;11:107–112.
MLA Durmuş, Seyhun. “Investigation of Wing Forms Through Mass and Wing Area Chart”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 2, 2022, pp. 107-12, doi:10.46810/tdfd.1084396.
Vancouver Durmuş S. Investigation of Wing Forms Through Mass and Wing Area Chart. TJNS. 2022;11(2):107-12.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.