Research Article
BibTex RIS Cite

Fe-Mn-Si Biyobozunur Stentlerin Mekanik Performansının Sonlu Eleman Simülasyonları Kullanılarak Değerlendirilmesi

Year 2022, Volume: 11 Issue: 2, 151 - 155, 29.06.2022
https://doi.org/10.46810/tdfd.1097511

Abstract

Biyobozunur metal stentler, mekanik görevlerini yerine getirdikten sonra zamanla vücut içerisinde çözüldükleri ve bu nedenle gelecekte bir risk oluşturmadıkları için potansiyel stent adaylarıdır. Önceki çalışmalarda, Fe-30Mn-6Si biyobozunur alaşımı mekanik dayanım ve biyolojik olarak parçalanabilirlik açısından başarılı olduğu görülmüştür. Bu çalışmada, Fe-30Mn-6Si alaşımından yapılmış bir stentin genleşme ve geri tepme davranışı sonlu eleman analizleri kullanılarak incelenmiştir. Karşılaştırma için L605 Co-Cr ve 316L paslanmaz çelik stentler de incelenmiştir. Elde edilen sonuçlar, yeni FeMnSi stentinin muadillerine göre daha düşük eşdeğer gerilme sergilediğini göstermiştir. Öte yandan, en düşük eşdeğer plastik gerinim ve en yüksek radyal elastik geri tepme değeri FeMnSi stentte gözlenmiştir. Genel bulgular, FeMnSi stentin balon-stent etkileşimi bakımından orta düzeyde başarılı olduğunu göstermektedir.

References

  • Debusschere N, Segers P, Dubruel P, Verhegghe B, Beule M De. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech. 2018;48(10):2012–8.
  • Kumar A, Bhatnagar N. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Comput Methods Biomech Biomed Engin. 2021;24(3):245–59.
  • Wang H, Wang X, Qian H, Lou D, Song M, Zhao X. The optimal structural analysis of cobalt-chromium alloy (L-605) coronary stents. Comput Methods Biomech Biomed Engin. 2021;24(14):1566–77.
  • Galvin E, Brien DO, Cummins C, Donald BJ Mac, Lally C. A strain-mediated corrosion model for bioabsorbable metallic stents. Acta Biomater. 2017;55:505–17.
  • Gu X, Mao Z, Ye SH, Koo Y, Yun Y, Tiasha TR, et al. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids Surfaces B Biointerfaces. 2016;144:170–9.
  • Xu C, Yin Z, Roy-Chaudhury P, Campos-Naciff B, Hou G, Schulz M. The development of a magnesium biodegradable stent: design, analysis, fabrication, and in-vivo test. Med Res Arch. 2020;8(9).
  • Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6(5):1705–13.
  • Feng YP, Gaztelumendi N, Fornell J, Zhang HY, Solsona P, Baró MD, et al. Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. J Alloys Compd. 2017;724:1046–56.
  • Loffredo S, Paternoster C, Giguère N, Barucca G, Vedani M, Mantovani D. The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents. Acta Biomater. 2019;98:103–13.
  • He J, He FL, Li DW, Liu YL, Liu YY, Ye YJ, et al. Advances in Fe-based biodegradable metallic materials. RSC Adv. 2016;6(114):112819–38.
  • Donik Č, Kocijan A, Paulin I, Hočevar M, Gregorčič P, Godec M. Improved biodegradability of Fe–Mn alloy after modification of surface chemistry and topography by a laser ablation. Appl Surf Sci. 2018;453(March):383–93.
  • Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65(3):540–3.
  • Drevet R, Zhukova Y, Malikova P, Dubinskiy S, Korotitskiy A, Pustov Y, et al. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants. Metall Mater Trans A. 2018;49(3):1006–13.
  • Babacan N, Kochta F, Hoffmann V, Gemming T, Kühn U, Giebeler L, et al. Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Mater Today Commun. 2021;28(July):102689.
  • Babacan N. Shape memory characteristics of silver-added Fe – 30Mn – 6Si Alloy. Trans Indian Inst Met. 2022
  • Azaouzi M, Makradi A, Belouettar S. Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method. Comput Mater Sci. 2013;72:54–61.
  • Kim D-Y, Lee S-Y, Kim H-Y. Numerical evaluation and shape design of coronary artery stent. J Korean Soc Precis Eng. 2012;29(1):103–8.
  • Chen Y, Shang X. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent. J Mech Behav Biomed Mater. 2021;119(February):104500.
  • ASTM F2079-09(2017), Standard Test Method for Measuring Intrinsic Elastic Recoil of Balloon-Expandable Stents; ASTM International: West Conshohocken, PA, USA, 2017.
  • Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577–82.

Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations

Year 2022, Volume: 11 Issue: 2, 151 - 155, 29.06.2022
https://doi.org/10.46810/tdfd.1097511

Abstract

Biodegradable metal stents are potential stent candidates as they dissolve in the body over time after fulfilling their mechanical duties and therefore do not pose a risk in the future. Fe-30Mn-6Si biodegradable alloy was found to be successful in the previous studies in terms of mechanical strength and biodegradability. In this study, the expansion and recoiling behavior of a stent made of Fe-30Mn-6Si alloy was investigated using finite element analyses. L605 Co-Cr and 316L stainless steel stents were also examined for comparison. Obtained results showed that novel FeMnSi stent exhibits lower equivalent stress than the counterparts. On the other hand, the lowest equivalent plastic strain and the highest radial elastic recoil value were observed in FeMnSi stent. Overall findings indicate that FeMnSi stent is moderately successful in terms of balloon-stent interaction.

References

  • Debusschere N, Segers P, Dubruel P, Verhegghe B, Beule M De. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J Biomech. 2018;48(10):2012–8.
  • Kumar A, Bhatnagar N. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Comput Methods Biomech Biomed Engin. 2021;24(3):245–59.
  • Wang H, Wang X, Qian H, Lou D, Song M, Zhao X. The optimal structural analysis of cobalt-chromium alloy (L-605) coronary stents. Comput Methods Biomech Biomed Engin. 2021;24(14):1566–77.
  • Galvin E, Brien DO, Cummins C, Donald BJ Mac, Lally C. A strain-mediated corrosion model for bioabsorbable metallic stents. Acta Biomater. 2017;55:505–17.
  • Gu X, Mao Z, Ye SH, Koo Y, Yun Y, Tiasha TR, et al. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids Surfaces B Biointerfaces. 2016;144:170–9.
  • Xu C, Yin Z, Roy-Chaudhury P, Campos-Naciff B, Hou G, Schulz M. The development of a magnesium biodegradable stent: design, analysis, fabrication, and in-vivo test. Med Res Arch. 2020;8(9).
  • Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6(5):1705–13.
  • Feng YP, Gaztelumendi N, Fornell J, Zhang HY, Solsona P, Baró MD, et al. Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys. J Alloys Compd. 2017;724:1046–56.
  • Loffredo S, Paternoster C, Giguère N, Barucca G, Vedani M, Mantovani D. The addition of silver affects the deformation mechanism of a twinning-induced plasticity steel: Potential for thinner degradable stents. Acta Biomater. 2019;98:103–13.
  • He J, He FL, Li DW, Liu YL, Liu YY, Ye YJ, et al. Advances in Fe-based biodegradable metallic materials. RSC Adv. 2016;6(114):112819–38.
  • Donik Č, Kocijan A, Paulin I, Hočevar M, Gregorčič P, Godec M. Improved biodegradability of Fe–Mn alloy after modification of surface chemistry and topography by a laser ablation. Appl Surf Sci. 2018;453(March):383–93.
  • Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65(3):540–3.
  • Drevet R, Zhukova Y, Malikova P, Dubinskiy S, Korotitskiy A, Pustov Y, et al. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants. Metall Mater Trans A. 2018;49(3):1006–13.
  • Babacan N, Kochta F, Hoffmann V, Gemming T, Kühn U, Giebeler L, et al. Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Mater Today Commun. 2021;28(July):102689.
  • Babacan N. Shape memory characteristics of silver-added Fe – 30Mn – 6Si Alloy. Trans Indian Inst Met. 2022
  • Azaouzi M, Makradi A, Belouettar S. Numerical investigations of the structural behavior of a balloon expandable stent design using finite element method. Comput Mater Sci. 2013;72:54–61.
  • Kim D-Y, Lee S-Y, Kim H-Y. Numerical evaluation and shape design of coronary artery stent. J Korean Soc Precis Eng. 2012;29(1):103–8.
  • Chen Y, Shang X. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent. J Mech Behav Biomed Mater. 2021;119(February):104500.
  • ASTM F2079-09(2017), Standard Test Method for Measuring Intrinsic Elastic Recoil of Balloon-Expandable Stents; ASTM International: West Conshohocken, PA, USA, 2017.
  • Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577–82.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nazım Babacan 0000-0003-2173-8656

Early Pub Date June 29, 2022
Publication Date June 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Babacan, N. (2022). Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations. Türk Doğa Ve Fen Dergisi, 11(2), 151-155. https://doi.org/10.46810/tdfd.1097511
AMA Babacan N. Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations. TJNS. June 2022;11(2):151-155. doi:10.46810/tdfd.1097511
Chicago Babacan, Nazım. “Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent Using Finite Element Simulations”. Türk Doğa Ve Fen Dergisi 11, no. 2 (June 2022): 151-55. https://doi.org/10.46810/tdfd.1097511.
EndNote Babacan N (June 1, 2022) Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations. Türk Doğa ve Fen Dergisi 11 2 151–155.
IEEE N. Babacan, “Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations”, TJNS, vol. 11, no. 2, pp. 151–155, 2022, doi: 10.46810/tdfd.1097511.
ISNAD Babacan, Nazım. “Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent Using Finite Element Simulations”. Türk Doğa ve Fen Dergisi 11/2 (June 2022), 151-155. https://doi.org/10.46810/tdfd.1097511.
JAMA Babacan N. Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations. TJNS. 2022;11:151–155.
MLA Babacan, Nazım. “Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent Using Finite Element Simulations”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 2, 2022, pp. 151-5, doi:10.46810/tdfd.1097511.
Vancouver Babacan N. Evaluation of Mechanical Performance of a Fe-Mn-Si Biodegradable Stent using Finite Element Simulations. TJNS. 2022;11(2):151-5.

Cited By

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.