Review
BibTex RIS Cite

Tatlı Bitkisel Proteinler ve Rekombinant Üretimleri

Year 2022, Volume: 11 Issue: 3, 186 - 194, 29.09.2022
https://doi.org/10.46810/tdfd.1027978

Abstract

Tüketicilerin doğal gıda ürünlerine karşı olan ilgisi ve artan bilinçleri nedeniyle, gıda endüstrisi doğal içeriklere sahip gıdalar üretmeye yönelmiştir. Öte yandan gıda endüstrisinde yüksek miktarda tatlandırıcı kullanımı da bir diğer sağlık sorunudur. Tatlı proteinler, sakkarozdan yüzlerce/binlerce kat daha fazla tatlılığa sahip ilgi çekici doğal tatlandırıcılardır.Tatlı proteinler, yüksek tatlılığa ancak düşük kalori değerlerine sahiptir ve doğal veya yapay tatlandırıcılara sağlıklı alternatifler olarak kullanım potansiyelleri yüksektir. Bilinen bitki tatlı proteinleri tropik bitkiler tarafından üretilir ve bu, elde edilebilecek protein miktarını sınırlar. Protein miktarını arttırmak için farklı ekspresyon sistemleri kullanılarak bitkisel tatlı proteinlerin rekombinant üretimi üzerine birçok çalışma yapılmıştır. Bu makalede, tatlı bitki proteinlerinin kaynakları, türleri, fizikokimyasal ve yapısal özellikleri ve rekombinant üretimi ile ilgili çalışmalar derlenmiş ve yeni yapılabilecek çalışmalar üzerinde durulmuştur.

References

  • [1] Carocho M, Morales P, and Ferreira I. C. F. R. Natural food additives: Quo vadis?.Trends Food Sci. Technol. 2015;45,(2):284–295.
  • [2] Kant R. Sweet proteins - Potential replacement for artificial low calorie sweeteners. Nutr. J., 2005; 4 :1–6.
  • [3] Saraiva A, Carrascosa C, Raheem D, Ramos F, and Raposo A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int. J. Environ. Res. Public Health. 2020; 17(17):1–22.
  • [4] Khan T. A, Sievenpiper J. L. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes,” Eur. J. Nutr.2016;55( s2):25–43 .
  • [5] Zhao X, Wang C , Zheng Y, Liu B . New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties. Front. Nutr.2021;8(June):1–7.
  • [6] Gwak M, Chung S, Kim Y. J., Lim C. S. Relative Sweetness and Sensory Characteristics of Bulk and Intense Sweeteners, 2012; 21(3):889–894.
  • [7] Faus I. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol. 2000;53( 2):145–151.
  • [8] Harada S, Otani H, Maeda S, Kai Y, Kasai N, Kurihara Y. Crystallization and Preliminary X-ray Diffraction Studies of Curculin: A New Type of Sweet Protein Having Taste-modifying Action,J. Mol. Biol. Apr. 1994;238(2):286–287.
  • [9] Inglett G. E, May J.F. Serendipity Berries–Source of a New Intense Sweetener. J. Food Sci. 1969; 34(5):408–411.
  • [10] Liu X, Maeda S, Z. Hu, Aiuchi T, Nakaya K , Kurihara Y.Purification .complete amino acid sequence and structural characterization of the heat‐stable sweet protein. mabinlin II. Eur. J. Biochem. 1993; 211( 1–2): 281–287.
  • [11] Ming D , Hellekant G . Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett. Nov. 1994; 355(1):106–108.
  • [12] Van der wel H , Loeve K . Isolation and Characterization of Thaumatin I and 11 . the Sweet -Tasting Proteins from Tha u ma tococc us clan ieh ! i i Bent h. Eur. J. Biochem . 1972;31( 1972):221–221.
  • [13] Takahashi N, Hitotsuya H, Hanzawa H, Arata Y, Kurihara Y .Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin. J. Biol. Chem. 1990;265(14):7793–7798.
  • [14] Joseph J. A, Akkermans A, Nimmegeers P, Van Impe J. F. M. Bioproduction of the recombinant Sweet protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019; 10(APR):1–19.
  • [15] Picone D , Temussi P. A. Dissimilar sweet proteins from plants: Oddities or normal components?. Plant Sci. 2012;195 :135–142.
  • [16] Caldwell J, Abildgaard F, Džakula Ž, et al. Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Mol Biol. 1998; 5: 427–431.
  • [17] Kurimoto E, Suzuki M, Amemiya E, Yamaguchi, Y, Nirasawa S, Shimba N, Kato. Curculin exhibits sweet-tasting and taste-modifying activities through its distinct molecular surfaces. Journal of Biological Chemistry. 2007; 282(46): 33252–33256.
  • [18] Li D F, Jiang P, Zhu D Y, Hu Y, Max M, Wang D C. Crystal structure of Mabinlin II: A novel structural type of sweet proteins and the main structural basis for its sweetness. Journal of Structural Biology. 2008; 162(1): 50–62.
  • [19] Kim S H, de Vos A, Ogata C.. Crystal structures of two intensely sweet proteins. Trends in Biochemical Sciences. 1998; 13(1): 13–15.
  • [20] Masuda T, Mikami B, Tani F. Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie. 2014; 106:33-38.
  • [21] Mortensen A. Sweeteners permitted in the European Union: Safety aspects. Scand. J. Food Nutr., 2006; 50(3) :104–116.
  • [22] Masuda T, Mikami B, Tani F, Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie. 2014; 106; 33–38.
  • [23] Gibbs B. F, Alli I , Mulligan C .Sweet and taste-modifying proteins: A review. Nutr. Res. 1996;16(9) :1619–1630.
  • [24] Izawa H, Ota M, Kohmura M, Ariyoshi Y.Synthesis and characterization of the sweet protein brazzein.Biopolymers.1996; 39( 1):95–101.
  • [25] Tang C. H. Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll. 2021;117( December 2020):106710.
  • [26] Kohmura M, Ariyoshi Y. Chemical synthesis and characterization of the sweet protein mabinlin II .Biopolymers. 1998; 46(4): 215–223.1998.
  • [27] Fawibe O. O, Ogunyale O G, And A. A. A., Agboola D. A. Botanical and Protein Sweeteners. 2014; 5(4):169–187.
  • [28] Wintjens R, Melody T, Ngoc V, Mbosso E, Huet J . Plant Science Hypothesis / review : The structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. 2011; 181:347–354.
  • [29] Lee A. A. Owyang .Sugars. Sweet taste receptors, and brain responses. Nutrients .2017; 9( 7): 1–13.
  • [30] Liu B, Jiang H, Wang H, Yang L. Removal of the N-terminal methionine improves the sweetness of the recombinant expressed sweet-tasting protein brazzein and its mutants in Escherichia coli. J. Food Biochem. 2021; 45(3):1–6.
  • [31] Kelada K. D, Tusé D, Gleba Y, McDonald K. A, Nandi S .Process simulation and techno-economic analysis of large-scale bioproduction of sweet protein Thaumatin II.Foods. 2021; 10(4): 1–17.
  • [32] Lu R, Li X, Wang Y, Jin L .Expression of functional plant sweet protein thaumatin II in the milk of transgenic mice. Food Bioprod. Process. 2021;125:222–227.
  • [33] Park Y. J ,Han J. E, Lee H, Lee J. Y, Ho T. T, Park S. Y. Production of recombinant miraculin protein in carrot callus via Agrobacterium-mediated transformation.Plant Cell. Tissue Organ Cult . Feb.2021; 1–9.
  • [34] Yamamoto T et al. Improvement of the transient expression system for production of recombinant proteins in plants. Sci. Rep. 2018; 8(1);1–10.
  • [35] Masuda T , Kitabatake N. Developments in biotechnological production of sweet proteins.J. Biosci. Bioeng. 2006;102(5): 375–389.
  • [36] Neiers F, Belloir C, Poirier N, Naumer C, Krohn M, Briand L, Comparison of different signal peptides for the efficient secretion of the sweet-tasting plant protein brazzein in Pichia pastoris. Life. 2021;11( 1): 1–12.
  • [37] Han J. E, Park Y. J., Lee H., Jeong Y. J, Park S. Y. Increased brazzein expression by abiotic stress and bioreactor culture system for the production of sweet protein, brazzein,Plant Biotechnol. Rep. 2020;14(4): 459–466.
  • [38] Lee H. M., Park S. W., Lee S. J., Kong K. H. Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in Kluyveromyces lactis. Prep. Biochem. Biotechnol. 2019; 49( 8): 790–799.
  • [39] Hung C.Y, Cheng L. H, Yeh C. M. Functional expression of recombinant sweet tasting protein brazzein by Escherichia coli and Bacillus licheniformis. Food Biotechnol., 2019; 33( 3): 251–271.
  • [40] Park S. W. et al. Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium .Bioprocess Biosyst. Eng.2021; 44(4): 913–925.
  • [41] Jafarian V, Bagheri K, Zarei J, Karami S, Ghanavatian P. Improved expression of recombinant sweet-tasting brazzein using codon optimization and host change as new strategies. Food Biotechnol. 2020; 34(1) : 62–76.2020.
  • [42] Yun C. R, Kong J. N, Chung J. H., Kim M. C, Kong K. H .Improved Secretory Production of the Sweet-Tasting Protein.Brazzein, in Kluyveromyces lactis, ” J. Agric. Food Chem. 2016; 64( 32): 6312–6316.
  • [43] Berlec A, Jevnikar Z, Majhenič A. Č, Rogelj A. Č., Štrukelj B .Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: A path toward sweet lactic acid bacteria.Appl. Microbiol. Biotechnol. 2006; 73(1) :158–165.
  • [44] Berlec A, Štrukelj B. Large increase in brazzein expression achieved by changing the plasmid/strain combination of the NICE system in Lactococcus lactis. Lett. Appl. Microbiol. 2009; 48( 6): 750–755.
  • [45] Berlec A , Štrukelj B . Generating a custom TA-cloning expression plasmid for Lactococcus lactis. Biotechniques.2021; 52(1) :51–53.
  • [46] Lee Y. W., Kim K. Y., Han S. H., Kang C. H., So J. S. Expression of the sweet-tasting protein brazzein in Lactobacillus spp. Food Sci. Biotechnol. 2012; 21( 3) :895–898.
  • [47] Poirier N et al. Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris. J. Agric. Food Chem. 2012; 60(39) :9807–9814.
  • [48] Gu W, Xia Q, Yao J , Fu S, Guo J, Hu X. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World J. Microbiol. Biotechnol. 2015; 31(4): 557–567 .
  • [49] Rega M. F. et al. Ecotoxicological survey of MNEI and Y65R-MNEI proteins as new potential high-intensity sweeteners .Environ. Sci. Pollut. Res. 2017; 24( 10):9734–9740.
  • [50] Jia L et al. Correction: Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency (PLoS ONE (2017) 12: 10 (e0184602) DOI: 10.1371/journal.pone.0184602,” PLoS One, 2018; 13( 7):1–19.
  • [51] Boumaiza M et al. Getting value from the waste: Recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb. Cell Fact. 2018;17(1):1–9.
  • [52] Cai C, Li L, Lu N, Zheng W, Yang L, Liu B .Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus .Biotechnol. Lett.2016; 38 (11):1941–1946.
  • [53] Liu J, zhong Yan D, jun Zhao S .Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae. J. Sci. Food Agric.2015; 95(13): 2646–2651.
  • [54] Chen Z, Li Z, Yu N, Yan N .Expression and secretion of a single-chain sweet protein, monellin, in Saccharomyces cerevisiae by an α-factor signal peptide. Biotechnol. Lett. 2011 ; 33(4):721–725.
  • [55] Healey R. D., Lebhar R. D., Hornung S, Thordarson P, Marquis C. P. An improved process for the production of highly purified recombinant thaumatin tagged-variants .Food Chem.. 2017; 237: 825–832. 2017.
  • [56] Torres P, Saa P. A, Albiol P. A., Ferrer P, Agosin E,Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris,” Metab. Eng. Commun., 2019; 9( July):e00103.
  • [57] Lombraña M, Moralejo P. A., Pinto R, Martín J. F. Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl. Environ. Microbiol. 2004; 70(9): 5145–5152.
  • [58] Masuda T, Ide L, Ohta K, Kitabatake. High-yield secretion of the recombinant sweet-tasting protein thaumatin I. Food Sci. Technol. Res. 2010; 16( 6) : 585–592.
  • [59] Daniell S, Mellits K. H, Faus I, Connerton I .Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem. 2000; 71 (1) :105–110.
  • [60] Edens L ,van der Wel H .Microbial synthesis of the sweet-tasting plant protein thaumatin. Trends Biotechnol. 1985; 3( 3) :61–64 1985.
  • [61] Illingworth C, Larson G, Hellekant G. Secretion of the sweet-tasting plant protein thaumatin by Bacillus subtilis.Biotechnol. Lett. 1988; 10(8):587–592.
  • [62] Lee J et al. Expression of Synthetic Thaumatin Genes in Yeast. Biochemistry , 1988;27(14):5101–5107.
  • [63] Hahm Y. T, Batt C.A. Expression and secretion of thaumatin from Aspergillus oryzae.Agric. Biol. Chem.1990; 54(10):2513–2520 .
  • [64] Faus I et al. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in the filamentous fungus Penicillium roquefortii. Biotechnol. Lett. 1997;19 ( 12):1185–1191.
  • [65] Assadi-Porter F. M. Aceti D. J., Cheng H., Markley J. L. Efficient Production of Recombinant Brazzein, a Small, Heat-Stable, Sweet-Tasting Protein of Plant Origin. Arch. Biochem. Biophys. Apr. 2000; 376(2):252–258.
  • [66] De Ruyter P. G. G. A., Kuipers O. P. De Vos W. M. Controlled gene expression systems for Lactococcus lactis with the food- grade inducer nisin. Appl. Environ. Microbiol. 1996; 62 (10):3662–3667.
  • [67] Poirier N et al. E ffi cient Production and Characterization of the Sweet-Tasting Brazzein Secreted by the Yeast Pichia pastoris.2012.
  • [68] Li D. F, Jiang P, Zhu D. Y, Hu Y, Max M, Wang D. C. Crystal structure of Mabinlin II: A novel structural type of sweet proteins and the main structural basis for its sweetness. J. Struct. Biol. Apr. 2008;162(1): 50–62.

Sweet Plant Proteins and Their Recombinant Production

Year 2022, Volume: 11 Issue: 3, 186 - 194, 29.09.2022
https://doi.org/10.46810/tdfd.1027978

Abstract

There is a growing interest and increasing awareness of consumers towards natural food products, therefore there is a shift in food industry to produce foods with natural ingredients. On the other hand, high amount of sweetener use in food industry is another health concern. An interesting group of natural sweeteners are sweet proteins, which have hundreds/thousands times higher sweetness than sucrose. Sweet proteins have high sweetness but low calorie values and are of interest as they can be used as healthy alternatives to natural or artificial sweeteners. Known plant sweet proteins are produced by tropical plants and this limits the amount of protein that can be obtained. In order to increase the amount of protein, many studies have been carried out on the recombinant production of plant sweet proteins using different expression systems. In this article, sources, types, physicochemical and structural properties of sweet plant proteins and studies on their recombinant production are reviewed with insights to future studies.

References

  • [1] Carocho M, Morales P, and Ferreira I. C. F. R. Natural food additives: Quo vadis?.Trends Food Sci. Technol. 2015;45,(2):284–295.
  • [2] Kant R. Sweet proteins - Potential replacement for artificial low calorie sweeteners. Nutr. J., 2005; 4 :1–6.
  • [3] Saraiva A, Carrascosa C, Raheem D, Ramos F, and Raposo A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int. J. Environ. Res. Public Health. 2020; 17(17):1–22.
  • [4] Khan T. A, Sievenpiper J. L. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes,” Eur. J. Nutr.2016;55( s2):25–43 .
  • [5] Zhao X, Wang C , Zheng Y, Liu B . New Insight Into the Structure-Activity Relationship of Sweet-Tasting Proteins: Protein Sector and Its Role for Sweet Properties. Front. Nutr.2021;8(June):1–7.
  • [6] Gwak M, Chung S, Kim Y. J., Lim C. S. Relative Sweetness and Sensory Characteristics of Bulk and Intense Sweeteners, 2012; 21(3):889–894.
  • [7] Faus I. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol. 2000;53( 2):145–151.
  • [8] Harada S, Otani H, Maeda S, Kai Y, Kasai N, Kurihara Y. Crystallization and Preliminary X-ray Diffraction Studies of Curculin: A New Type of Sweet Protein Having Taste-modifying Action,J. Mol. Biol. Apr. 1994;238(2):286–287.
  • [9] Inglett G. E, May J.F. Serendipity Berries–Source of a New Intense Sweetener. J. Food Sci. 1969; 34(5):408–411.
  • [10] Liu X, Maeda S, Z. Hu, Aiuchi T, Nakaya K , Kurihara Y.Purification .complete amino acid sequence and structural characterization of the heat‐stable sweet protein. mabinlin II. Eur. J. Biochem. 1993; 211( 1–2): 281–287.
  • [11] Ming D , Hellekant G . Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett. Nov. 1994; 355(1):106–108.
  • [12] Van der wel H , Loeve K . Isolation and Characterization of Thaumatin I and 11 . the Sweet -Tasting Proteins from Tha u ma tococc us clan ieh ! i i Bent h. Eur. J. Biochem . 1972;31( 1972):221–221.
  • [13] Takahashi N, Hitotsuya H, Hanzawa H, Arata Y, Kurihara Y .Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin. J. Biol. Chem. 1990;265(14):7793–7798.
  • [14] Joseph J. A, Akkermans A, Nimmegeers P, Van Impe J. F. M. Bioproduction of the recombinant Sweet protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019; 10(APR):1–19.
  • [15] Picone D , Temussi P. A. Dissimilar sweet proteins from plants: Oddities or normal components?. Plant Sci. 2012;195 :135–142.
  • [16] Caldwell J, Abildgaard F, Džakula Ž, et al. Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Mol Biol. 1998; 5: 427–431.
  • [17] Kurimoto E, Suzuki M, Amemiya E, Yamaguchi, Y, Nirasawa S, Shimba N, Kato. Curculin exhibits sweet-tasting and taste-modifying activities through its distinct molecular surfaces. Journal of Biological Chemistry. 2007; 282(46): 33252–33256.
  • [18] Li D F, Jiang P, Zhu D Y, Hu Y, Max M, Wang D C. Crystal structure of Mabinlin II: A novel structural type of sweet proteins and the main structural basis for its sweetness. Journal of Structural Biology. 2008; 162(1): 50–62.
  • [19] Kim S H, de Vos A, Ogata C.. Crystal structures of two intensely sweet proteins. Trends in Biochemical Sciences. 1998; 13(1): 13–15.
  • [20] Masuda T, Mikami B, Tani F. Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie. 2014; 106:33-38.
  • [21] Mortensen A. Sweeteners permitted in the European Union: Safety aspects. Scand. J. Food Nutr., 2006; 50(3) :104–116.
  • [22] Masuda T, Mikami B, Tani F, Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie. 2014; 106; 33–38.
  • [23] Gibbs B. F, Alli I , Mulligan C .Sweet and taste-modifying proteins: A review. Nutr. Res. 1996;16(9) :1619–1630.
  • [24] Izawa H, Ota M, Kohmura M, Ariyoshi Y.Synthesis and characterization of the sweet protein brazzein.Biopolymers.1996; 39( 1):95–101.
  • [25] Tang C. H. Assembly of food proteins for nano- encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll. 2021;117( December 2020):106710.
  • [26] Kohmura M, Ariyoshi Y. Chemical synthesis and characterization of the sweet protein mabinlin II .Biopolymers. 1998; 46(4): 215–223.1998.
  • [27] Fawibe O. O, Ogunyale O G, And A. A. A., Agboola D. A. Botanical and Protein Sweeteners. 2014; 5(4):169–187.
  • [28] Wintjens R, Melody T, Ngoc V, Mbosso E, Huet J . Plant Science Hypothesis / review : The structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. 2011; 181:347–354.
  • [29] Lee A. A. Owyang .Sugars. Sweet taste receptors, and brain responses. Nutrients .2017; 9( 7): 1–13.
  • [30] Liu B, Jiang H, Wang H, Yang L. Removal of the N-terminal methionine improves the sweetness of the recombinant expressed sweet-tasting protein brazzein and its mutants in Escherichia coli. J. Food Biochem. 2021; 45(3):1–6.
  • [31] Kelada K. D, Tusé D, Gleba Y, McDonald K. A, Nandi S .Process simulation and techno-economic analysis of large-scale bioproduction of sweet protein Thaumatin II.Foods. 2021; 10(4): 1–17.
  • [32] Lu R, Li X, Wang Y, Jin L .Expression of functional plant sweet protein thaumatin II in the milk of transgenic mice. Food Bioprod. Process. 2021;125:222–227.
  • [33] Park Y. J ,Han J. E, Lee H, Lee J. Y, Ho T. T, Park S. Y. Production of recombinant miraculin protein in carrot callus via Agrobacterium-mediated transformation.Plant Cell. Tissue Organ Cult . Feb.2021; 1–9.
  • [34] Yamamoto T et al. Improvement of the transient expression system for production of recombinant proteins in plants. Sci. Rep. 2018; 8(1);1–10.
  • [35] Masuda T , Kitabatake N. Developments in biotechnological production of sweet proteins.J. Biosci. Bioeng. 2006;102(5): 375–389.
  • [36] Neiers F, Belloir C, Poirier N, Naumer C, Krohn M, Briand L, Comparison of different signal peptides for the efficient secretion of the sweet-tasting plant protein brazzein in Pichia pastoris. Life. 2021;11( 1): 1–12.
  • [37] Han J. E, Park Y. J., Lee H., Jeong Y. J, Park S. Y. Increased brazzein expression by abiotic stress and bioreactor culture system for the production of sweet protein, brazzein,Plant Biotechnol. Rep. 2020;14(4): 459–466.
  • [38] Lee H. M., Park S. W., Lee S. J., Kong K. H. Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in Kluyveromyces lactis. Prep. Biochem. Biotechnol. 2019; 49( 8): 790–799.
  • [39] Hung C.Y, Cheng L. H, Yeh C. M. Functional expression of recombinant sweet tasting protein brazzein by Escherichia coli and Bacillus licheniformis. Food Biotechnol., 2019; 33( 3): 251–271.
  • [40] Park S. W. et al. Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium .Bioprocess Biosyst. Eng.2021; 44(4): 913–925.
  • [41] Jafarian V, Bagheri K, Zarei J, Karami S, Ghanavatian P. Improved expression of recombinant sweet-tasting brazzein using codon optimization and host change as new strategies. Food Biotechnol. 2020; 34(1) : 62–76.2020.
  • [42] Yun C. R, Kong J. N, Chung J. H., Kim M. C, Kong K. H .Improved Secretory Production of the Sweet-Tasting Protein.Brazzein, in Kluyveromyces lactis, ” J. Agric. Food Chem. 2016; 64( 32): 6312–6316.
  • [43] Berlec A, Jevnikar Z, Majhenič A. Č, Rogelj A. Č., Štrukelj B .Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: A path toward sweet lactic acid bacteria.Appl. Microbiol. Biotechnol. 2006; 73(1) :158–165.
  • [44] Berlec A, Štrukelj B. Large increase in brazzein expression achieved by changing the plasmid/strain combination of the NICE system in Lactococcus lactis. Lett. Appl. Microbiol. 2009; 48( 6): 750–755.
  • [45] Berlec A , Štrukelj B . Generating a custom TA-cloning expression plasmid for Lactococcus lactis. Biotechniques.2021; 52(1) :51–53.
  • [46] Lee Y. W., Kim K. Y., Han S. H., Kang C. H., So J. S. Expression of the sweet-tasting protein brazzein in Lactobacillus spp. Food Sci. Biotechnol. 2012; 21( 3) :895–898.
  • [47] Poirier N et al. Efficient production and characterization of the sweet-tasting brazzein secreted by the yeast Pichia pastoris. J. Agric. Food Chem. 2012; 60(39) :9807–9814.
  • [48] Gu W, Xia Q, Yao J , Fu S, Guo J, Hu X. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis. World J. Microbiol. Biotechnol. 2015; 31(4): 557–567 .
  • [49] Rega M. F. et al. Ecotoxicological survey of MNEI and Y65R-MNEI proteins as new potential high-intensity sweeteners .Environ. Sci. Pollut. Res. 2017; 24( 10):9734–9740.
  • [50] Jia L et al. Correction: Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency (PLoS ONE (2017) 12: 10 (e0184602) DOI: 10.1371/journal.pone.0184602,” PLoS One, 2018; 13( 7):1–19.
  • [51] Boumaiza M et al. Getting value from the waste: Recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb. Cell Fact. 2018;17(1):1–9.
  • [52] Cai C, Li L, Lu N, Zheng W, Yang L, Liu B .Expression of a high sweetness and heat-resistant mutant of sweet-tasting protein, monellin, in Pichia pastoris with a constitutive GAPDH promoter and modified N-terminus .Biotechnol. Lett.2016; 38 (11):1941–1946.
  • [53] Liu J, zhong Yan D, jun Zhao S .Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae. J. Sci. Food Agric.2015; 95(13): 2646–2651.
  • [54] Chen Z, Li Z, Yu N, Yan N .Expression and secretion of a single-chain sweet protein, monellin, in Saccharomyces cerevisiae by an α-factor signal peptide. Biotechnol. Lett. 2011 ; 33(4):721–725.
  • [55] Healey R. D., Lebhar R. D., Hornung S, Thordarson P, Marquis C. P. An improved process for the production of highly purified recombinant thaumatin tagged-variants .Food Chem.. 2017; 237: 825–832. 2017.
  • [56] Torres P, Saa P. A, Albiol P. A., Ferrer P, Agosin E,Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris,” Metab. Eng. Commun., 2019; 9( July):e00103.
  • [57] Lombraña M, Moralejo P. A., Pinto R, Martín J. F. Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl. Environ. Microbiol. 2004; 70(9): 5145–5152.
  • [58] Masuda T, Ide L, Ohta K, Kitabatake. High-yield secretion of the recombinant sweet-tasting protein thaumatin I. Food Sci. Technol. Res. 2010; 16( 6) : 585–592.
  • [59] Daniell S, Mellits K. H, Faus I, Connerton I .Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem. 2000; 71 (1) :105–110.
  • [60] Edens L ,van der Wel H .Microbial synthesis of the sweet-tasting plant protein thaumatin. Trends Biotechnol. 1985; 3( 3) :61–64 1985.
  • [61] Illingworth C, Larson G, Hellekant G. Secretion of the sweet-tasting plant protein thaumatin by Bacillus subtilis.Biotechnol. Lett. 1988; 10(8):587–592.
  • [62] Lee J et al. Expression of Synthetic Thaumatin Genes in Yeast. Biochemistry , 1988;27(14):5101–5107.
  • [63] Hahm Y. T, Batt C.A. Expression and secretion of thaumatin from Aspergillus oryzae.Agric. Biol. Chem.1990; 54(10):2513–2520 .
  • [64] Faus I et al. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in the filamentous fungus Penicillium roquefortii. Biotechnol. Lett. 1997;19 ( 12):1185–1191.
  • [65] Assadi-Porter F. M. Aceti D. J., Cheng H., Markley J. L. Efficient Production of Recombinant Brazzein, a Small, Heat-Stable, Sweet-Tasting Protein of Plant Origin. Arch. Biochem. Biophys. Apr. 2000; 376(2):252–258.
  • [66] De Ruyter P. G. G. A., Kuipers O. P. De Vos W. M. Controlled gene expression systems for Lactococcus lactis with the food- grade inducer nisin. Appl. Environ. Microbiol. 1996; 62 (10):3662–3667.
  • [67] Poirier N et al. E ffi cient Production and Characterization of the Sweet-Tasting Brazzein Secreted by the Yeast Pichia pastoris.2012.
  • [68] Li D. F, Jiang P, Zhu D. Y, Hu Y, Max M, Wang D. C. Crystal structure of Mabinlin II: A novel structural type of sweet proteins and the main structural basis for its sweetness. J. Struct. Biol. Apr. 2008;162(1): 50–62.
There are 68 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Shokoufeh Yazdanian Asr 0000-0002-3468-7045

Nergiz Yüksel 0000-0002-1334-051X

Seyhan İçier 0000-0002-0627-733X

Burcu Kaplan Türköz 0000-0003-3040-3321

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Yazdanian Asr, S., Yüksel, N., İçier, S., Kaplan Türköz, B. (2022). Sweet Plant Proteins and Their Recombinant Production. Türk Doğa Ve Fen Dergisi, 11(3), 186-194. https://doi.org/10.46810/tdfd.1027978
AMA Yazdanian Asr S, Yüksel N, İçier S, Kaplan Türköz B. Sweet Plant Proteins and Their Recombinant Production. TJNS. September 2022;11(3):186-194. doi:10.46810/tdfd.1027978
Chicago Yazdanian Asr, Shokoufeh, Nergiz Yüksel, Seyhan İçier, and Burcu Kaplan Türköz. “Sweet Plant Proteins and Their Recombinant Production”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 186-94. https://doi.org/10.46810/tdfd.1027978.
EndNote Yazdanian Asr S, Yüksel N, İçier S, Kaplan Türköz B (September 1, 2022) Sweet Plant Proteins and Their Recombinant Production. Türk Doğa ve Fen Dergisi 11 3 186–194.
IEEE S. Yazdanian Asr, N. Yüksel, S. İçier, and B. Kaplan Türköz, “Sweet Plant Proteins and Their Recombinant Production”, TJNS, vol. 11, no. 3, pp. 186–194, 2022, doi: 10.46810/tdfd.1027978.
ISNAD Yazdanian Asr, Shokoufeh et al. “Sweet Plant Proteins and Their Recombinant Production”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 186-194. https://doi.org/10.46810/tdfd.1027978.
JAMA Yazdanian Asr S, Yüksel N, İçier S, Kaplan Türköz B. Sweet Plant Proteins and Their Recombinant Production. TJNS. 2022;11:186–194.
MLA Yazdanian Asr, Shokoufeh et al. “Sweet Plant Proteins and Their Recombinant Production”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 186-94, doi:10.46810/tdfd.1027978.
Vancouver Yazdanian Asr S, Yüksel N, İçier S, Kaplan Türköz B. Sweet Plant Proteins and Their Recombinant Production. TJNS. 2022;11(3):186-94.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.