Research Article
BibTex RIS Cite

RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE

Year 2022, Volume: 11 Issue: 3, 150 - 154, 29.09.2022
https://doi.org/10.46810/tdfd.1112957

Abstract

With the developing technology, technological blessings make human life easier and help them every day. Unmanned aerial vehicles (UAV), which is one of the technological blessings, have shown themselves in many fields, especially in fields such as the military, defense industry, photography, and hobby. With the development of defense systems with UAVs, the security of railways has also been left to UAVs. In this study, while the foreign matter separation is made on the railway by using the deep learning model in real-time, the image taken on the UAV is simultaneously controlled by using the image processing method. The fact that the deep learning model has a 0.99 mAP rate increases the reliability of the model.

References

  • [Sonay GÖRGÜLÜ BALCI. Hafif raylı sistemlerde lazerli engel algılayıcı sistem tasarımı [dissertation]. Kırıkkale üniversitesi; 2014.
  • Feng H, Jiang Z, Xie F, Yang P, Shi J, Chen L. Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems. IEEE Transactions on Instrumentation and Measurement. 2014;63(4):877-888.
  • Shah A, Bhatti N, Dev K, Chowdhry B. MUHAFIZ: IoT-Based Track Recording Vehicle for the Damage Analysis of the Railway Track. IEEE Internet of Things Journal. 2021;8(11):9397-9406.
  • Aydin I, Sevi M, Sahbaz K, Karakose M. Detection of Rail Defects with Deep Learning Controlled Autonomous UAV. Sakheer, Bahrain: Sakheer, Bahrain; 2021.
  • KAYA V, BARAN A, TUNCER S. Dinamit Destekli Terör Faaliyetlerinin Önlenmesi İçin Derin Öğrenme Temelli Güvenlik Destek Sistemi. European Journal of Science and Technology. 2021;.
  • Shafique R, Siddiqui H, Rustam F, Ullah S, Siddique M, Lee E et al. A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis. Sensors. 2021;21(18):6221.
  • AYDIN İ, GÜÇLÜ E, AKIN E. Mask R-CNN Algoritmasını Kullanarak Demiryolu Travers Eksikliklerinin Tespiti İçin Otonom İHA Tasarımı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;.
  • Zhang H, Jin X, Wu Q, Wang Y, He Z, Yang Y. Automatic Visual Detection System of Railway Surface Defects With Curvature Filter and Improved Gaussian Mixture Model. IEEE Transactions on Instrumentation and Measurement. 2018;67(7):1593-1608.
  • Singh M, Singh S, Jaiswal J, Hempshall J. Autonomous Rail Track Inspection using Vision Based System. 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. 2006;.
  • Faghih-Roohi S, Hajizadeh S, Nunez A, Babuska R, De Schutter B. Deep convolutional neural networks for detection of rail surface defects. 2016 International Joint Conference on Neural Networks (IJCNN). 2016;.
  • Bayhan E, Ozkan Z, Namdar M, Basgumus A. Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 2021;.
  • Yan B, Fan P, Lei X, Liu Z, Yang F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sensing. 2021;13(9):1619.
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016. p. 779-788.
  • GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite [Internet]. GitHub. 2022 [cited 20 Apr. 2022]. Available from: https://github.com/ultralytics/yolov5
  • Murat S. İNSANSIZ HAVA ARACI GÖRÜNTÜLERİNDEN DERİN ÖĞRENME YÖNTEMLERİYLE NESNE TANIMA [YL]. Maltepe Üniversitesi; 2021.
  • Wang Z, Wu L, Li T, Shi P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics. 2022;10(7):1190.
  • BULUT F. DEĞİŞTİRİLMİŞ AYRIK HAAR DALGACIK DÖNÜŞÜMÜ İLE YENİ BİR HİSTOGRAM EŞİTLEME YÖNTEMİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2022;10(1):188-200..
  • Jebadass J, Balasubramaniam P. Low light enhancement algorithm for color images using intuitionistic fuzzy sets with histogram equalization. Multimedia Tools and Applications. 2022;81(6):8093-8106.
  • Cartucho J, Ventura R, Veloso M. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018;.
  • Qi J, Liu X, Liu K, Xu F, Guo H, Tian X et al. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Computers and Electronics in Agriculture. 2022;194:106780.
Year 2022, Volume: 11 Issue: 3, 150 - 154, 29.09.2022
https://doi.org/10.46810/tdfd.1112957

Abstract

References

  • [Sonay GÖRGÜLÜ BALCI. Hafif raylı sistemlerde lazerli engel algılayıcı sistem tasarımı [dissertation]. Kırıkkale üniversitesi; 2014.
  • Feng H, Jiang Z, Xie F, Yang P, Shi J, Chen L. Automatic Fastener Classification and Defect Detection in Vision-Based Railway Inspection Systems. IEEE Transactions on Instrumentation and Measurement. 2014;63(4):877-888.
  • Shah A, Bhatti N, Dev K, Chowdhry B. MUHAFIZ: IoT-Based Track Recording Vehicle for the Damage Analysis of the Railway Track. IEEE Internet of Things Journal. 2021;8(11):9397-9406.
  • Aydin I, Sevi M, Sahbaz K, Karakose M. Detection of Rail Defects with Deep Learning Controlled Autonomous UAV. Sakheer, Bahrain: Sakheer, Bahrain; 2021.
  • KAYA V, BARAN A, TUNCER S. Dinamit Destekli Terör Faaliyetlerinin Önlenmesi İçin Derin Öğrenme Temelli Güvenlik Destek Sistemi. European Journal of Science and Technology. 2021;.
  • Shafique R, Siddiqui H, Rustam F, Ullah S, Siddique M, Lee E et al. A Novel Approach to Railway Track Faults Detection Using Acoustic Analysis. Sensors. 2021;21(18):6221.
  • AYDIN İ, GÜÇLÜ E, AKIN E. Mask R-CNN Algoritmasını Kullanarak Demiryolu Travers Eksikliklerinin Tespiti İçin Otonom İHA Tasarımı. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022;.
  • Zhang H, Jin X, Wu Q, Wang Y, He Z, Yang Y. Automatic Visual Detection System of Railway Surface Defects With Curvature Filter and Improved Gaussian Mixture Model. IEEE Transactions on Instrumentation and Measurement. 2018;67(7):1593-1608.
  • Singh M, Singh S, Jaiswal J, Hempshall J. Autonomous Rail Track Inspection using Vision Based System. 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety. 2006;.
  • Faghih-Roohi S, Hajizadeh S, Nunez A, Babuska R, De Schutter B. Deep convolutional neural networks for detection of rail surface defects. 2016 International Joint Conference on Neural Networks (IJCNN). 2016;.
  • Bayhan E, Ozkan Z, Namdar M, Basgumus A. Deep Learning Based Object Detection and Recognition of Unmanned Aerial Vehicles. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 2021;.
  • Yan B, Fan P, Lei X, Liu Z, Yang F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sensing. 2021;13(9):1619.
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016. p. 779-788.
  • GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite [Internet]. GitHub. 2022 [cited 20 Apr. 2022]. Available from: https://github.com/ultralytics/yolov5
  • Murat S. İNSANSIZ HAVA ARACI GÖRÜNTÜLERİNDEN DERİN ÖĞRENME YÖNTEMLERİYLE NESNE TANIMA [YL]. Maltepe Üniversitesi; 2021.
  • Wang Z, Wu L, Li T, Shi P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics. 2022;10(7):1190.
  • BULUT F. DEĞİŞTİRİLMİŞ AYRIK HAAR DALGACIK DÖNÜŞÜMÜ İLE YENİ BİR HİSTOGRAM EŞİTLEME YÖNTEMİ. Mühendislik Bilimleri ve Tasarım Dergisi. 2022;10(1):188-200..
  • Jebadass J, Balasubramaniam P. Low light enhancement algorithm for color images using intuitionistic fuzzy sets with histogram equalization. Multimedia Tools and Applications. 2022;81(6):8093-8106.
  • Cartucho J, Ventura R, Veloso M. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018;.
  • Qi J, Liu X, Liu K, Xu F, Guo H, Tian X et al. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Computers and Electronics in Agriculture. 2022;194:106780.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Muzaffer Eylence 0000-0001-7299-8525

Mehmet Yücel 0000-0002-4100-5831

Mustafa Melikşah Özmen 0000-0003-3585-0518

Bekir Aksoy 0000-0001-8052-9411

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Eylence, M., Yücel, M., Özmen, M. M., Aksoy, B. (2022). RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE. Türk Doğa Ve Fen Dergisi, 11(3), 150-154. https://doi.org/10.46810/tdfd.1112957
AMA Eylence M, Yücel M, Özmen MM, Aksoy B. RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE. TJNS. September 2022;11(3):150-154. doi:10.46810/tdfd.1112957
Chicago Eylence, Muzaffer, Mehmet Yücel, Mustafa Melikşah Özmen, and Bekir Aksoy. “RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 150-54. https://doi.org/10.46810/tdfd.1112957.
EndNote Eylence M, Yücel M, Özmen MM, Aksoy B (September 1, 2022) RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE. Türk Doğa ve Fen Dergisi 11 3 150–154.
IEEE M. Eylence, M. Yücel, M. M. Özmen, and B. Aksoy, “RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE”, TJNS, vol. 11, no. 3, pp. 150–154, 2022, doi: 10.46810/tdfd.1112957.
ISNAD Eylence, Muzaffer et al. “RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 150-154. https://doi.org/10.46810/tdfd.1112957.
JAMA Eylence M, Yücel M, Özmen MM, Aksoy B. RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE. TJNS. 2022;11:150–154.
MLA Eylence, Muzaffer et al. “RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 150-4, doi:10.46810/tdfd.1112957.
Vancouver Eylence M, Yücel M, Özmen MM, Aksoy B. RAILWAY SECURITY SYSTEM DESIGN BY IMAGE PROCESSING AND DEEP LEARNING UNMANNED AERIAL VEHICLE. TJNS. 2022;11(3):150-4.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.