Research Article
BibTex RIS Cite

BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD

Year 2022, Volume: 11 Issue: 3, 110 - 117, 29.09.2022
https://doi.org/10.46810/tdfd.1159727

Abstract

Bee bread is a food product obtained by fermenting bee pollen with honey and storing it in honeycomb cells. In this fermentation, phenolic compounds remain unaffected and unchanged. Bee bread contains approximately; there are 35% sugar, 24-35% carbohydrate, 20-22% protein, 3.5% lactic acid, 2.43% mineral, 1.6% lipid and 1.6% fat. Within the scope of the study, biocompatible iron nanoparticles were synthesized (BB@FeNPs) by utilizing the potential reducing powers of these components contained in bee bread. Characterization of obtained bee bread-based nanoparticles; were performed using spectroscopic techniques such as ultraviolet-visible light spectrophotometer, fourier transform infrared spectrophotometer, and x-ray diffraction spectrometry. Scanning electron microscopy was used as a microscopic method in the characterization of nanoparticles. In addition, the sun protection factor (SPF) of the synthesized nanoparticles was determined by ultraviolet spectrophotometry. Although the studies in recent years tend to search for bioactive molecules of natural origin, no nanoparticle synthesis with bee bread has been encountered in the literature. This study is important as it is a first in the synthesis of metal nanoparticles with bee bread.

Thanks

This study was carried out within the scope of 100/2000 YÖK doctoral scholarship.

References

  • Feynman RP. There’s plenty of room at the bottom. Engineering and Science, 1960. 23. p. 22-36.
  • Beykaya M, Çağlar A. Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma. Afyon Kocatepe University Journal of Science and Engineering. 2016;16(3):631-641.
  • Crane M, Handy RD, Garrod J, Owen R. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology. 2008;17(5):421-437.
  • Nagarajan R. Nanoparticles: Building blocks for nanotechnology. In: Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. American Chemical Society. Chapter 1, 2008. p. 2-14.
  • Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, et al. Enginar yaprağı sulu ekstraktı kullanılarak çinko oksit nanopartiküllerinin yeşil sentezi, karakterizasyonu, anti-bakteriyel ve sitotoksik etkileri. Düzce Tıp Fakültesi Dergisi. 2019;21(1):19-26.
  • Karnani RL, Chowdhary A. Biosynthesis of silver nanoparticle by eco-friendly method. Indian Journal of NanoScience. 2013;1(2):25-31.
  • Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Yeşil yöntemle sentezlenen biyoaktif nanopartiküller. Black Sea Journal of Engineering and Science. 2021;4(1): 29-42.
  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, et al. Applications and toxicity of silver nanoparticles: A recent review. Current Topics in Medicinal Chemistry. 2015;15(16):1596-1604.
  • Khalifa SAM, Elashal M, Kieliszek M, Ghazala NE, Farag MA, Saeed A, et al. Recent insights into chemical and pharmacological studies of bee bread. Trends in Food Science & Technology. 2020;97:300-316.
  • Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of The Total Enviroment. 2008;400(1-3):396-414.
  • Johnston BD, Scown TM, Morger J, Cumberland SA, Baalousha M, Linge K, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environmental Science and Technology. 2010;44(3):1144-1151.
  • Sadeghi L, Tanwir F, Babadi VY. In vitro toxicity of iron oxide nanoparticle: Oxidative damages on HepG2 cells. Experimental and Toxicologic Pathology. 2015;67(2):197-203.
  • Caro C., Egea-Benavente D., Polvillo R., Royo J.L., Leal M.P., Garcia-Martin M.L. Comprehensive toxicity assessment of PEGylated magnetic nanoparticles for in vivo applications. Colloids and Surfaces B: Biointerfaces. 2019;177:253-259.
  • Dale L. Synthesis, properties, and applications of iron nanoparticles. Small: Nano Micro. 2005;1(5):482-501.
  • Diffey BL. Sunscreens, suntans and skin cancer: People do not apply enough sunscreen for protection. BMJ. 1996;313(7062):942.
  • Mansur JS, Breder MNR, Mansur MCA, Azulay RD. Determinaçao do fator de proteçao solar por espectrofotometria. Anais Brasileiros de Dermatologia. 1986;61(3):121-124.
  • Fonseca AP, Rafaela N. Determination of sun protection factor by UV-Vis Spectrophotometry. Health Care Current Reviews. 2013;1(1):108.
  • Sayre RM, Agın PP, Levee GJ, Marlowe E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology. 2008;29(3):559-566.
  • Baalousha M, Lead JR. Characterization of natural aquatic colloids by fow field flow fraction and atomic force microscopy. Environmental Science & Technology. 2007;41(4):1111-1117.
  • Aydoğan Ö., Bayraktar E., Mehmetoğlu Ü. Ters misel sistemi ile L-aspartik asit ekstraksiyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2009;15(2):284-290.
  • Novák P, Havlí V. Protein extraction and precipitation. In: Proteomic Profiling and Analytical Chemistry (Second Edition). 2016. p. 52-62.
  • Üzüm Ç, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science. 2009;43(2):172-181.
  • Çiftçi H, Ersoy B, Evcin A. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Physıca Polonıca A. 2017;132(3):564-569.
  • Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, et al. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology. 2018;185:262-274.
  • Jegadeesan GB, Srimathi K, Santosh Srinivas N, Manishkanna S, Vignesh D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatalysis and Agricultural Biotechnology. 2019;21:101-354.
  • Chavan RR, Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Todkar SS, et al. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Materials Today Communications. 2020;24:101320.
  • Wang YM, Cao X, Liu GH, Hong RY, Chen YM, Chen XF et al. Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. Journal of Magnetism and Magnetic Materials. 2011;323(23):2953-2959.
  • Silva VAJ, Andrade PL, Silva MPC, Bustamante DA, Valladares LDLS, Aguiar JA. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials. 2013;34:138-143.
  • Patra JK, Baek K. Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo catalyzed condition and investigation of their antimicrobial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology. 2017;173:291-300.
  • Sax BW. Educating consumers about sun protection. Pharmacy Times. New York. 2000;66(5):48-50.
  • Stockdale M. Sun protection factors. International Journal of Cosmetic Science. 1985;7(5):235-246.
  • He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine & Pharmacotherapy. 2021;(134):111161.
  • Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide-and zinc oxide-based sunscreens. Journal of the American Academy of Dermatology. 2009;61(4):685-692.
  • Singh P, Nanda A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. International Journal of Cosmetic Science. 2014;(363):273-283.
  • Gu T, Yao C, Zhang K, Li C, Ding L, Huang Y, et al. Toxic effects of zinc oxide nanoparticles combined with vitamin C and casein phosphopeptides on gastric epithelium cells and the intestinal absorption of mice. RSC Advances. 2018;8(46):26078-26088.
  • Wong SWY, Zhou GJ, Leung PTY, Han J, Lee JS, Kwok KWH et al. Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. Marine Pollution Bulletin. 2020;154:111078.
  • Krol A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science. 2017;249:37-52.
  • SCCS, Chaudhry Q. Opinion of the scientific committee on consumer safety (SCCS)- Revision of the opinion on the safety of the use of titanium dioxide, nano form, in cosmetic products. Regulatory Toxicology and Pharmacology. 2015;73(2):669-670.
  • Truffault L, Ta MT, Devers T, Konstantinov K, Harel V, Simmonard C, et al. Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Materials Research Bulletin. 2010;45(5):527-535.
  • Truffault L, Winton BR, Choquenet B, Andreazza-Vignolle C, Simmonard C, Devers T, et al. Cerium oxide based particles as possible alternative to ZnO in sunscreens: Effect of the synthesis method on the photoprotection results. Materials Letters. 2012;68:357-360.
  • Truffault L, Yao QW, Wexler D, Nevirkovets IP, Konstantinov K, Devers T, et al. Synthesis and characterization of Fe doped CeO2 nanoparticles for pigmented ultraviolet filter applications. Journal of Nanoscience and Nanotechnology. 2011a;11(5):4019-4028.
  • Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. Journal of photochemistry and photobiology B: Biology. 2010;102(1):32-38.
  • Yabe S, Sato T. Cerium oxide for sunscreen cosmetics. Journal of Solid State Chemistry. 2003;171(1-2):7-11.
  • Boutard T, Rousseau B, Couteau C, Tomasoni C, Simonnard C, Jacquot C, et al. Comparison of photoprotection efficiency and antiproliferative activity of ZnO commercial sunscreens and CeO2. Materials Letters. 2013;108:13-16.
  • Caputo F, Nicola MDe, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7(38):15643-15656.
  • Morlando A, Cardillo D, Devers T, Konstantinov K. Titanium doped tin dioxide as potential UV filter with low photocatalytic activity for sunscreen products. Materials Letters. 2016;171:289-292.
  • Cardillo D, Konstantinov K, Devers T. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration. Materials Research Bulletin. 2013;48(11):4521-4525.
  • Truffault L, Choquenet B, Konstantinov K, Devers T, Couteau C, Coiffard LJM. Synthesis of Nano-hematite for possible use in sunscreens. Journal of Nanoscience and Nanotechnology. 2011b;11(3):2413-2420.
  • Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product. Inorganica Chimica Acta. 2007;360(3):794-802.

ARI EKMEĞİ İLE DEMİR NANOPARTİKÜLLERİNİN BİYOSENTEZİ, KARAKTERİZASYONU VE GÜNEŞ KORUMA FAKTÖRÜNÜN (SPF) BELİRLENMESİ

Year 2022, Volume: 11 Issue: 3, 110 - 117, 29.09.2022
https://doi.org/10.46810/tdfd.1159727

Abstract

Arı ekmeği, arı poleninin bal ile fermente edilmesi ve petek gözlerine depolanmasıyla elde edilen bir gıda maddesidir. Bu fermantasyonda fenolik bileşikler etkilenmeden ve değişmeden kalmaktadır. Arı ekmeği içeriğinde yaklaşık olarak; %35 şeker, %24-35 karbonhidrat, %20-22 protein, %3,5 laktik asit, %2,43 mineral, %1,6 lipid ve %1,6 yağ bulunmaktadır. Çalışma kapsamında, arı ekmeğinin içermiş olduğu bu bileşenlerin potansiyel indirgeme güçlerinden yararlanılarak biyouyumlu demir nanopartiküller sentezlenmiştir (BB@FeNPs). Elde edilen arı ekmeği temelli nanopartiküllerin karakterizasyonu; ultraviyole-görünür ışık spektrofotometresi, fourier dönüşümlü kızılötesi spektrofotometresi ve x-ışını kırınım spektrometresi gibi spektroskopik teknikler kullanılarak gerçekleştirilmiştir. Nanopartiküllerin karakterizasyonunda mikroskobik yöntem olarak ise taramalı elektron mikroskobu kullanılmıştır. Ayrıca sentezlenen nanopartiküllerin güneş koruma faktörü (SPF) ultraviyole spektrofotometri ile belirlenmiştir. Son yıllardaki çalışmaların doğal kaynaklı biyoaktif molekülleri araştırma eğiliminde olmasıyla birlikte, literatürde arı ekmeği ile nanopartikül sentezine rastlanılmamıştır. Bu çalışma arı ekmeği ile metal nanopartikül sentezinde bir ilk olması açısından önemlidir.

References

  • Feynman RP. There’s plenty of room at the bottom. Engineering and Science, 1960. 23. p. 22-36.
  • Beykaya M, Çağlar A. Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma. Afyon Kocatepe University Journal of Science and Engineering. 2016;16(3):631-641.
  • Crane M, Handy RD, Garrod J, Owen R. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology. 2008;17(5):421-437.
  • Nagarajan R. Nanoparticles: Building blocks for nanotechnology. In: Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. American Chemical Society. Chapter 1, 2008. p. 2-14.
  • Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, et al. Enginar yaprağı sulu ekstraktı kullanılarak çinko oksit nanopartiküllerinin yeşil sentezi, karakterizasyonu, anti-bakteriyel ve sitotoksik etkileri. Düzce Tıp Fakültesi Dergisi. 2019;21(1):19-26.
  • Karnani RL, Chowdhary A. Biosynthesis of silver nanoparticle by eco-friendly method. Indian Journal of NanoScience. 2013;1(2):25-31.
  • Çiftçi H, Er Çalışkan Ç, Öztürk K, Yazıcı B. Yeşil yöntemle sentezlenen biyoaktif nanopartiküller. Black Sea Journal of Engineering and Science. 2021;4(1): 29-42.
  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, et al. Applications and toxicity of silver nanoparticles: A recent review. Current Topics in Medicinal Chemistry. 2015;15(16):1596-1604.
  • Khalifa SAM, Elashal M, Kieliszek M, Ghazala NE, Farag MA, Saeed A, et al. Recent insights into chemical and pharmacological studies of bee bread. Trends in Food Science & Technology. 2020;97:300-316.
  • Ju-Nam Y, Lead JR. Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of The Total Enviroment. 2008;400(1-3):396-414.
  • Johnston BD, Scown TM, Morger J, Cumberland SA, Baalousha M, Linge K, et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environmental Science and Technology. 2010;44(3):1144-1151.
  • Sadeghi L, Tanwir F, Babadi VY. In vitro toxicity of iron oxide nanoparticle: Oxidative damages on HepG2 cells. Experimental and Toxicologic Pathology. 2015;67(2):197-203.
  • Caro C., Egea-Benavente D., Polvillo R., Royo J.L., Leal M.P., Garcia-Martin M.L. Comprehensive toxicity assessment of PEGylated magnetic nanoparticles for in vivo applications. Colloids and Surfaces B: Biointerfaces. 2019;177:253-259.
  • Dale L. Synthesis, properties, and applications of iron nanoparticles. Small: Nano Micro. 2005;1(5):482-501.
  • Diffey BL. Sunscreens, suntans and skin cancer: People do not apply enough sunscreen for protection. BMJ. 1996;313(7062):942.
  • Mansur JS, Breder MNR, Mansur MCA, Azulay RD. Determinaçao do fator de proteçao solar por espectrofotometria. Anais Brasileiros de Dermatologia. 1986;61(3):121-124.
  • Fonseca AP, Rafaela N. Determination of sun protection factor by UV-Vis Spectrophotometry. Health Care Current Reviews. 2013;1(1):108.
  • Sayre RM, Agın PP, Levee GJ, Marlowe E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology. 2008;29(3):559-566.
  • Baalousha M, Lead JR. Characterization of natural aquatic colloids by fow field flow fraction and atomic force microscopy. Environmental Science & Technology. 2007;41(4):1111-1117.
  • Aydoğan Ö., Bayraktar E., Mehmetoğlu Ü. Ters misel sistemi ile L-aspartik asit ekstraksiyonu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2009;15(2):284-290.
  • Novák P, Havlí V. Protein extraction and precipitation. In: Proteomic Profiling and Analytical Chemistry (Second Edition). 2016. p. 52-62.
  • Üzüm Ç, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science. 2009;43(2):172-181.
  • Çiftçi H, Ersoy B, Evcin A. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Physıca Polonıca A. 2017;132(3):564-569.
  • Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, et al. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology. 2018;185:262-274.
  • Jegadeesan GB, Srimathi K, Santosh Srinivas N, Manishkanna S, Vignesh D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatalysis and Agricultural Biotechnology. 2019;21:101-354.
  • Chavan RR, Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Todkar SS, et al. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Materials Today Communications. 2020;24:101320.
  • Wang YM, Cao X, Liu GH, Hong RY, Chen YM, Chen XF et al. Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia. Journal of Magnetism and Magnetic Materials. 2011;323(23):2953-2959.
  • Silva VAJ, Andrade PL, Silva MPC, Bustamante DA, Valladares LDLS, Aguiar JA. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials. 2013;34:138-143.
  • Patra JK, Baek K. Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo catalyzed condition and investigation of their antimicrobial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology. 2017;173:291-300.
  • Sax BW. Educating consumers about sun protection. Pharmacy Times. New York. 2000;66(5):48-50.
  • Stockdale M. Sun protection factors. International Journal of Cosmetic Science. 1985;7(5):235-246.
  • He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomedicine & Pharmacotherapy. 2021;(134):111161.
  • Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide-and zinc oxide-based sunscreens. Journal of the American Academy of Dermatology. 2009;61(4):685-692.
  • Singh P, Nanda A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. International Journal of Cosmetic Science. 2014;(363):273-283.
  • Gu T, Yao C, Zhang K, Li C, Ding L, Huang Y, et al. Toxic effects of zinc oxide nanoparticles combined with vitamin C and casein phosphopeptides on gastric epithelium cells and the intestinal absorption of mice. RSC Advances. 2018;8(46):26078-26088.
  • Wong SWY, Zhou GJ, Leung PTY, Han J, Lee JS, Kwok KWH et al. Sunscreens containing zinc oxide nanoparticles can trigger oxidative stress and toxicity to the marine copepod Tigriopus japonicus. Marine Pollution Bulletin. 2020;154:111078.
  • Krol A, Pomastowski P, Rafińska K, Railean-Plugaru V, Buszewski B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science. 2017;249:37-52.
  • SCCS, Chaudhry Q. Opinion of the scientific committee on consumer safety (SCCS)- Revision of the opinion on the safety of the use of titanium dioxide, nano form, in cosmetic products. Regulatory Toxicology and Pharmacology. 2015;73(2):669-670.
  • Truffault L, Ta MT, Devers T, Konstantinov K, Harel V, Simmonard C, et al. Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Materials Research Bulletin. 2010;45(5):527-535.
  • Truffault L, Winton BR, Choquenet B, Andreazza-Vignolle C, Simmonard C, Devers T, et al. Cerium oxide based particles as possible alternative to ZnO in sunscreens: Effect of the synthesis method on the photoprotection results. Materials Letters. 2012;68:357-360.
  • Truffault L, Yao QW, Wexler D, Nevirkovets IP, Konstantinov K, Devers T, et al. Synthesis and characterization of Fe doped CeO2 nanoparticles for pigmented ultraviolet filter applications. Journal of Nanoscience and Nanotechnology. 2011a;11(5):4019-4028.
  • Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AS, Polezhaeva OS, Baranchikov AY, et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. Journal of photochemistry and photobiology B: Biology. 2010;102(1):32-38.
  • Yabe S, Sato T. Cerium oxide for sunscreen cosmetics. Journal of Solid State Chemistry. 2003;171(1-2):7-11.
  • Boutard T, Rousseau B, Couteau C, Tomasoni C, Simonnard C, Jacquot C, et al. Comparison of photoprotection efficiency and antiproliferative activity of ZnO commercial sunscreens and CeO2. Materials Letters. 2013;108:13-16.
  • Caputo F, Nicola MDe, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, et al. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. 2015;7(38):15643-15656.
  • Morlando A, Cardillo D, Devers T, Konstantinov K. Titanium doped tin dioxide as potential UV filter with low photocatalytic activity for sunscreen products. Materials Letters. 2016;171:289-292.
  • Cardillo D, Konstantinov K, Devers T. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration. Materials Research Bulletin. 2013;48(11):4521-4525.
  • Truffault L, Choquenet B, Konstantinov K, Devers T, Couteau C, Coiffard LJM. Synthesis of Nano-hematite for possible use in sunscreens. Journal of Nanoscience and Nanotechnology. 2011b;11(3):2413-2420.
  • Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product. Inorganica Chimica Acta. 2007;360(3):794-802.
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Büşra Bıldır 0000-0002-5631-1946

Zeynep Demirkan 0000-0002-8101-8194

Bülent Kaya 0000-0002-1216-6441

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Bıldır, B., Demirkan, Z., & Kaya, B. (2022). BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD. Türk Doğa Ve Fen Dergisi, 11(3), 110-117. https://doi.org/10.46810/tdfd.1159727
AMA Bıldır B, Demirkan Z, Kaya B. BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD. TJNS. September 2022;11(3):110-117. doi:10.46810/tdfd.1159727
Chicago Bıldır, Büşra, Zeynep Demirkan, and Bülent Kaya. “BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 110-17. https://doi.org/10.46810/tdfd.1159727.
EndNote Bıldır B, Demirkan Z, Kaya B (September 1, 2022) BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD. Türk Doğa ve Fen Dergisi 11 3 110–117.
IEEE B. Bıldır, Z. Demirkan, and B. Kaya, “BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD”, TJNS, vol. 11, no. 3, pp. 110–117, 2022, doi: 10.46810/tdfd.1159727.
ISNAD Bıldır, Büşra et al. “BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 110-117. https://doi.org/10.46810/tdfd.1159727.
JAMA Bıldır B, Demirkan Z, Kaya B. BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD. TJNS. 2022;11:110–117.
MLA Bıldır, Büşra et al. “BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 110-7, doi:10.46810/tdfd.1159727.
Vancouver Bıldır B, Demirkan Z, Kaya B. BIOSYNTHESIS, CHARACTERIZATION AND DETERMINATION OF SUN PROTECTION FACTOR (SPF) OF IRON NANOPARTICLES WITH BEE BREAD. TJNS. 2022;11(3):110-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.