Research Article
BibTex RIS Cite

Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC

Year 2022, Volume: 11 Issue: 4, 104 - 110, 28.12.2022
https://doi.org/10.46810/tdfd.1199583

Abstract

Bu çalışma, Büyük Hadron Çarpıştırıcısı (BHÇ) ve Gelecekteki Dairesel Çarpıştırıcı (FCC) için 14, 27 ve 100 TeV kütle merkez enerjilerinde Wbb ̅ üretim kanalının leading order (LO) ve next-to-leading order (NLO) kuantum renk dinamiği (QCD) tesir kesitlerini sunmaktadır. Sayısal sonuçları elde etmek için beş farklı parton dağıtım fonksiyonu (PDF) kullanılmış ve PDF hataları MCFM Monte Carlo programı ile elde edilmiştir. Ayrıca renormalizasyon ve faktörizasyon ölçeklerinin farklı değerleri için scale hata payı hesaplaması yapılmıştır. W üretim kanalında elde edilen scale hata paylarının aksine Wbb ̅ üretim kanalında NLO QCD'deki scale hata payları LO QCD’deki scale hata paylarından daha yüksek bulunmuştur. Artan enerjinin hata payları üzerindeki etkisini test etmek için, artan enerji ile scale, PDF ve α_S belirsizliklerinin karşılaştırılması yapılmıştır. Ayrıca, bu çalışmada kullanılan simülasyon kodunun doğruluğunu onaylamak için √s=7 TeV enerji değerinde elde edilen sonuçlar ile aynı enerjideki CMS verileri karşılaştırılmıştır. Yazılmış olan kodların doğruluğunun onaylanmasından sonra, Wbb ̅ üretim kanalının √s= 14, 27 ve 100 TeV'deki LO ve NLO QCD tesir kesitleri hesaplanmıştır. Daha sonra √s= 7 TeV enerjisindeki veri ile aynı istatistiğe sahip verinin elde edilmesi için √s= 14, 27 ve 100 TeV enerjilerinde ihtiyaç duyulan veri miktarı hesaplanmıştır.

Thanks

The numerical calculations reported in this paper were fully/partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • Evans L, Bryant P. LHC Machine. Journal of Instrumentation 2008; 3: S08001.
  • Kuehn S. Impact of the HL-LHC detector upgrades on the physics program. International Workshop on Future Linear Colliders. LCWS2021. Zurich, 15-18 March 2021.
  • Future Circular Collider Conceptual Design Report, The European Organization for Nuclear Research, (2019), URL:https://fcc-cdr.web.cern.ch/
  • The FCC Collaboration, Eur. Phys. J. Spec. Top. 2019; 228: 261–623.
  • Abada A, Abrescia M, Abdussalam S, Abdyukhanov I, Fernandez J, Abramov A, et al. HE-LHC: The High Energy Large Hadron Collider. Eur. Phys. J. Spec. Top. 2019; 228:1109–1382.
  • The FCC Collaboration. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019; 228:755–1107.
  • Campbell J, Ellis K, Neumann T, Williams C. MCFM - Monte Carlo for FeMtobarn processes. [2022 November 3] Available from: https://mcfm.fnal.gov/
  • Buckley A, Ferrando J, Lloyd S, Nordstrom K, Page B, Ruefenacht M, et al. LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C. 2015; 75(132): 1-20.
  • Cordero F, Reina L, Wackeroth D. W and Z boson production with a massive bottom quark pair at the Large Hadron Collider. Phys. Rev. D 2009; 80: 034015.
  • Catani S, Dokshitzer YL, Webber BR. The k_T clustering algorithm for jets in deep inelastic scattering and hadron collisions. Phys. Lett. B. 1992; 285 (3): 291-299.
  • Kilgore B, Giele T. Next-to-leading order gluonic three-jet production at hadron colliders. Phys. Rev. D. 1997; 55:7183.
  • Dilsiz K, Tiras E. Inclusive W boson QCD predictions and lepton charge asymmetry in proton-proton collisions at √s = 14 TeV. Canadian J. of Phys. 2018; 96(9):1029-1033.
  • Ball R, Bertone V, Carrazza S, Debbio L, Forte S, Groth-Merrild P, et al. Parton distributions from high-precision collider data. Eur. Phys. J. C. 2017; 77(10): 663.
  • Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer W, et al. Measurement of the production cross section for a W boson and two b jets in pp collisions at √s = 7 TeV. Phys. Lett. B. 2014; 735: 204–225.
  • Dulat S, Hou T, Gao J, Guzzi M, Huston J, Nadolsky P, et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D. 2016; 93(3): 033006.
  • Martin A, Stirling S, Throne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009; 63:189–285.
  • Martin A, Stirling S, Thorne RS, Watt G. Heavy-quark mass dependence in global PDF analyses and 3 and 4 flavour parton distributions. Eur. Phys. J. C. 2010; 70: 51–72.
  • Harland-Lang L.A, Martin A.D, Motylinski P, Throne R.S. Parton distributions in the LHC era:MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75(5): 204.
  • Abramowicz H, Abt I, Adamczyk L, Adamus M, Andreev V, Antonelli S, et al. Combination of measurements of inclusive deep inelastic e^±p scattering cross section and QCD analysis of HERA data. Eur. Phys. J. C. 2015; 75:580.
  • Butterworth J, Carrazza S, Cooper-Sarkar A, Roeck A, Feltesse J, Forte S, et al. PDF4LHC recommendations for LHC Run II. J. Phys. G. 2016; 43: 023001.
Year 2022, Volume: 11 Issue: 4, 104 - 110, 28.12.2022
https://doi.org/10.46810/tdfd.1199583

Abstract

References

  • Evans L, Bryant P. LHC Machine. Journal of Instrumentation 2008; 3: S08001.
  • Kuehn S. Impact of the HL-LHC detector upgrades on the physics program. International Workshop on Future Linear Colliders. LCWS2021. Zurich, 15-18 March 2021.
  • Future Circular Collider Conceptual Design Report, The European Organization for Nuclear Research, (2019), URL:https://fcc-cdr.web.cern.ch/
  • The FCC Collaboration, Eur. Phys. J. Spec. Top. 2019; 228: 261–623.
  • Abada A, Abrescia M, Abdussalam S, Abdyukhanov I, Fernandez J, Abramov A, et al. HE-LHC: The High Energy Large Hadron Collider. Eur. Phys. J. Spec. Top. 2019; 228:1109–1382.
  • The FCC Collaboration. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019; 228:755–1107.
  • Campbell J, Ellis K, Neumann T, Williams C. MCFM - Monte Carlo for FeMtobarn processes. [2022 November 3] Available from: https://mcfm.fnal.gov/
  • Buckley A, Ferrando J, Lloyd S, Nordstrom K, Page B, Ruefenacht M, et al. LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C. 2015; 75(132): 1-20.
  • Cordero F, Reina L, Wackeroth D. W and Z boson production with a massive bottom quark pair at the Large Hadron Collider. Phys. Rev. D 2009; 80: 034015.
  • Catani S, Dokshitzer YL, Webber BR. The k_T clustering algorithm for jets in deep inelastic scattering and hadron collisions. Phys. Lett. B. 1992; 285 (3): 291-299.
  • Kilgore B, Giele T. Next-to-leading order gluonic three-jet production at hadron colliders. Phys. Rev. D. 1997; 55:7183.
  • Dilsiz K, Tiras E. Inclusive W boson QCD predictions and lepton charge asymmetry in proton-proton collisions at √s = 14 TeV. Canadian J. of Phys. 2018; 96(9):1029-1033.
  • Ball R, Bertone V, Carrazza S, Debbio L, Forte S, Groth-Merrild P, et al. Parton distributions from high-precision collider data. Eur. Phys. J. C. 2017; 77(10): 663.
  • Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Bergauer W, et al. Measurement of the production cross section for a W boson and two b jets in pp collisions at √s = 7 TeV. Phys. Lett. B. 2014; 735: 204–225.
  • Dulat S, Hou T, Gao J, Guzzi M, Huston J, Nadolsky P, et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D. 2016; 93(3): 033006.
  • Martin A, Stirling S, Throne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009; 63:189–285.
  • Martin A, Stirling S, Thorne RS, Watt G. Heavy-quark mass dependence in global PDF analyses and 3 and 4 flavour parton distributions. Eur. Phys. J. C. 2010; 70: 51–72.
  • Harland-Lang L.A, Martin A.D, Motylinski P, Throne R.S. Parton distributions in the LHC era:MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75(5): 204.
  • Abramowicz H, Abt I, Adamczyk L, Adamus M, Andreev V, Antonelli S, et al. Combination of measurements of inclusive deep inelastic e^±p scattering cross section and QCD analysis of HERA data. Eur. Phys. J. C. 2015; 75:580.
  • Butterworth J, Carrazza S, Cooper-Sarkar A, Roeck A, Feltesse J, Forte S, et al. PDF4LHC recommendations for LHC Run II. J. Phys. G. 2016; 43: 023001.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kamuran Dilsiz 0000-0003-0138-3368

Publication Date December 28, 2022
Published in Issue Year 2022 Volume: 11 Issue: 4

Cite

APA Dilsiz, K. (2022). Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC. Türk Doğa Ve Fen Dergisi, 11(4), 104-110. https://doi.org/10.46810/tdfd.1199583
AMA Dilsiz K. Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC. TJNS. December 2022;11(4):104-110. doi:10.46810/tdfd.1199583
Chicago Dilsiz, Kamuran. “Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC”. Türk Doğa Ve Fen Dergisi 11, no. 4 (December 2022): 104-10. https://doi.org/10.46810/tdfd.1199583.
EndNote Dilsiz K (December 1, 2022) Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC. Türk Doğa ve Fen Dergisi 11 4 104–110.
IEEE K. Dilsiz, “Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC”, TJNS, vol. 11, no. 4, pp. 104–110, 2022, doi: 10.46810/tdfd.1199583.
ISNAD Dilsiz, Kamuran. “Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC”. Türk Doğa ve Fen Dergisi 11/4 (December 2022), 104-110. https://doi.org/10.46810/tdfd.1199583.
JAMA Dilsiz K. Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC. TJNS. 2022;11:104–110.
MLA Dilsiz, Kamuran. “Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 4, 2022, pp. 104-10, doi:10.46810/tdfd.1199583.
Vancouver Dilsiz K. Wbb ̅ QCD Predictions in Proton Proton Collisions for the LHC and FCC. TJNS. 2022;11(4):104-10.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.