Research Article
BibTex RIS Cite
Year 2023, Volume: 12 Issue: 1, 76 - 81, 27.03.2023
https://doi.org/10.46810/tdfd.1193469

Abstract

References

  • [1] Linsley G, Sjöblom KL, Cabianca T. Overview of the point sources of anthropogenic radionuclides in the oceans, in: Marine Radioactivity. Radioactiv. Environm. H.D. Livingston (Ed.). 2004;6.
  • [2] Peng C, Ma Y, Ding Y, He X, Zhang P, Lan T, Wang D, Z. Zhang Z. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa. Int. J. Mol. Sci. 2017;18:795. https://doi.org/10.3390/ijms18040795
  • [3] Barrow C, & Shahidi F. Marine nutraceuticals and functional foods. CRC Press, Boca Raton. 2007; 512.
  • [4] Tejera A, Pérez-Sánchez L, Guerra G, Arriola-Velásquez A, Alonso H, Arnedo M, et al. Natural radioactivity in algae arrivals on the Canary coast and dosimetry assessment. Sci. Total Environ. 2009;658:122-131. https://doi.org/10.1016/j.scitotenv.2018.12.140
  • [5] Khandaker M, Heffny NAB, Amin YM, Bradley DA. Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans. Algal Research. 2019;38:101386. https://doi.org/10.1016/j.algal.2018.101386.
  • [6] Uddin S, Bebhehani M, Sajid S, Karam Q. Concentration of 210Po and 210Pb in macroalgae from the northern Gulf, Mar. Pollut. Bull. 2019;145:474-479. https://doi.org/10.1016/j.marpolbul.2019.06.056.
  • [7] Shigeoka Y, Myose H, Akiyama S, Matsumoto A, Hirakawa N, Ohashi H, et al. Temporal Variation of Radionuclide Contamination of Marine Plants on the Fukushima Coast after the East Japan Nuclear Disaster. Environ. Sci. Technol. 2019; 53(16):9370-9377. DOI: 10.1021/acs.est.9b01987
  • [8] Robu E, Giovani C. Gamma-ray self-attenuation corrections in environmental samples. Rom. Rep. Phys. 2009;61(2):295.
  • [9] Gouda MM, Hamzawy A, Badawi MS, El Hatib AM, Thabet AA, Abbas Mİ. Mathematical method to calculate full-energy peak efficiency of detectors based on transfer technique. Indian J Phys. 2016; 90:201–210. https://doi.org/10.1007/s12648-015-0737-1
  • [10] Guerra JG, Rubiano JG, Winter G, Guerra AG, Alonso H, Arnedo MA, Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017; 858:113-122. https://doi.org/10.1016/j.nima.2017.02.087.
  • [11] Subercaze A, Sauzedde T, Domergue C, Destouches C, Philibert H, Fausser C, et al. Effect of the geometrical parameters of an HPGe detector on efficiency calculations using Monte Carlo methods, Nuclear Instruments and Methods in Physics Research Section A: Nucl. Instrum. Methods Phys. Res. A. 2022; 1039:167096. https://doi.org/10.1016/j.nima.2022.167096.
  • [12] Mohebian M, Pourimani R, Modarresi SM. Using MCNP Simulation for Self-absorption Correction in HPGe Spectrometry of Soil Samples. Iran J Sci Technol Trans Sci. 2019;43:3047–3052. https://doi.org/10.1007/s40995-019-00775-5
  • [13] Barba-Lobo A, Bolívar JP. A practical and general methodology for efficiency calibration of coaxial Ge detectors. Measurement. 2022;197:111295. https://doi.org/10.1016/j.measurement.2022.111295.
  • [14] Sostaric M, Babic D, Petrinec B, Zgorelec Z. Determination of gamma-ray self-attenuation correction in environmental samples by combining transmission measurements and Monte Carlo simulations. Appl. Radiat. Isot. 2016;113:110-116. https://doi.org/10.1016/j.apradiso.2016.04.012.
  • [15] Jodłowski P. Self-absorption correction in gamma-ray spectrometry of environmental samples - an overview of methods and correction values obtained for the selected geometries. Nukleonika. 2006;51(2): 21–25.
  • [16] Khater AEM, Ebaid YY. A simplified gamma-ray self-attenuation correction in bulk samples. Appl. Radiat. Isot. 2008;66:407–413.
  • [17] Pourimani R, Mohebian M, Modarresi SM. Assessment of the Soil Self-Attenuation Correction Factor to Determine the Efficiency of a High-Purity Germanium Detector. Iran J Sci Technol Trans Sci. 2020;44:311–317. https://doi.org/10.1007/s40995-020-00816-4.
  • [18] Eke C, Boztosun I. Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J Radioanal Nucl Chem. 2014; 301:103–108. https://doi.org/10.1007/s10967-014-3145-7.
  • [19] Barba-Lobo A, Mosqueda F, Bolívar JP. A general function for determining mass attenuation coefficients to correct self-absorption effects in samples measured by gamma spectrometry. Radiat. Phys. Chem. 2021;179:109247 https://doi.org/10.1016/j.radphyschem.2020.109247.
  • [20] McMahon CA, Fegan MF, Wong J, Long SC, Ryan TP, Colgan PA. Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples. Appl. Radiat. Isot. 2004; 60 (2–4):571-577. https://doi.org/10.1016/j.apradiso.2003.11.081.
  • [21] Millsap DW, Landsberger S. Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl. Radiat. Isot. 2015;97:21-23. https://doi.org/10.1016/j.apradiso.2014.12.008.
  • [22] Dziri S, Nachab A, Nourreddine A, Sellam A, Pape A. Elemental composition effects on self-absorption for photons below 100 keV in gamma-ray spectrometry, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2014: 330:1-6. https://doi.org/10.1016/j.nimb.2014.02.116.
  • [23] Bonczyk M. Determination of 210Pb concentration in NORM waste – An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry. Radiat. Phys. Chem. 2018;148:1-4. https://doi.org/10.1016/j.radphyschem.2018.02.011.
  • [24] Barros LF, Pecequilo BRS. Self-attenuation factors in gamma-ray spectrometry of select sand samples from Camburi Beach, Vitória, Espírito Santo, Brazil. Radiat. Phys. Chem. 2014;95:339-341. https://doi.org/10.1016/j.radphyschem.2012.12.031.
  • [25] Misiak R, Hajduk R, Stobiński M, Bartyzel M, Szarłowicz K, Kubica K., & B. Self-absorption correction and efficiency calibration for radioactivity measurement of environmental samples by gamma-ray spectrometry. Nukleonika. 2011;56:23-28.
  • [26] Bouisset P, Lefèvre O, Cagnat X, Kerlau G, Ugron A, Calmet D. Direct gamma-X spectrometry measurement of 129I in environmental samples using experimental self-absorption corrections. Nucl. Instrum. Methods Phys. Res.,Sect. A. 1999;437(1):114-127.
  • [27] Eke C, Yildirim A. Experimental and Simulation Results of the Self-Absorption Correction Factors of Some Chemical Fertilizers in the Energy Range from 80 to 1332 keV. Bull. Russ. Acad. Sci. Phys. 2020;84:1012–1021. https://doi.org/10.3103/S1062873820080122.
  • [28] Pilleyre T, Sanzelle S, Miallier D, Fain D, Courtine F. Theoretical and experimental estimation of self-attenuation corrections in determination of 210Pb by γ-spectrometry with well Ge detector. Radiat. Meas. 2006;41(3):323-329. https://doi.org/10.1016/j.radmeas.2004.11.007.
  • [29] Bolivar JP, García-León M, García-Tenorio R. On self-attenuation corrections in gamma-ray spectrometry. Appl. Radiat. Isot. 1997;48(8):1125-1126. https://doi.org/10.1016/S0969-8043(97)00034-1.
  • [30] Eke C, Agar O, Boztosun I, Aslan A, Emsen B. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry. Kerntechnik. 2017;82 (1):136-139. https://doi.org/10.3139/124.110614.
  • [31] Jeffrey Cessna T, Daniel Golas B, Denis Bergeron E. Source self-attenuation in ionization chamber measurements of 57Co solutions. Appl. Radiat. Isot. 2016;109:402-404. https://doi.org/10.1016/j.apradiso.2015.12.019.
  • [32] Boshkova T, Minev L. Corrections for self-attenuation in gamma-ray spectrometry of bulk samples Appl. Radiat. Isot. 2001;54:777-783. https://doi.org/10.1016/S0969-8043(00)00319-5.
  • [33] Al-Masri MS, Hasan M, Al-Hamwi A, Amin Y, Doubal AW. Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV. J. Environ. Radioact. 2013;116:28-33. https://doi.org/10.1016/j.jenvrad.2012.09.008.
  • [34] Cutshall NH, Larsen IL, Olsen CR. Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl. Instruments Andm. 1983; 206:309-312.
  • [35] MC2 Analyzer, Available from:https://www.caen.it/products/mc2analyzer/ [cited 2022 October 12]
  • [36] Lurian AR, Millward GE, Sima O, Taylor A, Blake W. Self-attenuation corrections for Pb-210 in gamma-ray spectrometry using well and coaxial HPGe detectors. Appl. Radiat. Isot. 2018;134:151-156. https://doi.org/10.1016/j.apradiso.2017.06.048.
  • [37] Barrera M, Suarez-Llorens A, Ruiz MC, Alonso JJ, Vidal J. Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017;854:31-39. https://doi.org/10.1016/j.nima.2017.02.052.

Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study

Year 2023, Volume: 12 Issue: 1, 76 - 81, 27.03.2023
https://doi.org/10.46810/tdfd.1193469

Abstract

The purpose of this study to examine experimentally self-absorption correction factors (SACFs) of some algae samples using gamma-ray spectrometry. Various algae samples were collected from Boğaçay in Antalya, Turkey. Collected algae samples were dried, and masses of the samples were calculated. Then densities of the samples were calculated. Each of algaes was counted with and without point sources which are 22Na, 60Co, 133Ba, and 137Cs about 1000 seconds using high purity germanium detector. The SACFs of algae samples were calculated between 80 keV and 1332 keV gamma-ray energies. As a result, SACFs of studied algae samples generally reduce as gamma-ray energy enhances. SACFs of some algae samples are nearly steady because of the densities and elemental contents of the studied algaes.

References

  • [1] Linsley G, Sjöblom KL, Cabianca T. Overview of the point sources of anthropogenic radionuclides in the oceans, in: Marine Radioactivity. Radioactiv. Environm. H.D. Livingston (Ed.). 2004;6.
  • [2] Peng C, Ma Y, Ding Y, He X, Zhang P, Lan T, Wang D, Z. Zhang Z. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa. Int. J. Mol. Sci. 2017;18:795. https://doi.org/10.3390/ijms18040795
  • [3] Barrow C, & Shahidi F. Marine nutraceuticals and functional foods. CRC Press, Boca Raton. 2007; 512.
  • [4] Tejera A, Pérez-Sánchez L, Guerra G, Arriola-Velásquez A, Alonso H, Arnedo M, et al. Natural radioactivity in algae arrivals on the Canary coast and dosimetry assessment. Sci. Total Environ. 2009;658:122-131. https://doi.org/10.1016/j.scitotenv.2018.12.140
  • [5] Khandaker M, Heffny NAB, Amin YM, Bradley DA. Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans. Algal Research. 2019;38:101386. https://doi.org/10.1016/j.algal.2018.101386.
  • [6] Uddin S, Bebhehani M, Sajid S, Karam Q. Concentration of 210Po and 210Pb in macroalgae from the northern Gulf, Mar. Pollut. Bull. 2019;145:474-479. https://doi.org/10.1016/j.marpolbul.2019.06.056.
  • [7] Shigeoka Y, Myose H, Akiyama S, Matsumoto A, Hirakawa N, Ohashi H, et al. Temporal Variation of Radionuclide Contamination of Marine Plants on the Fukushima Coast after the East Japan Nuclear Disaster. Environ. Sci. Technol. 2019; 53(16):9370-9377. DOI: 10.1021/acs.est.9b01987
  • [8] Robu E, Giovani C. Gamma-ray self-attenuation corrections in environmental samples. Rom. Rep. Phys. 2009;61(2):295.
  • [9] Gouda MM, Hamzawy A, Badawi MS, El Hatib AM, Thabet AA, Abbas Mİ. Mathematical method to calculate full-energy peak efficiency of detectors based on transfer technique. Indian J Phys. 2016; 90:201–210. https://doi.org/10.1007/s12648-015-0737-1
  • [10] Guerra JG, Rubiano JG, Winter G, Guerra AG, Alonso H, Arnedo MA, Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017; 858:113-122. https://doi.org/10.1016/j.nima.2017.02.087.
  • [11] Subercaze A, Sauzedde T, Domergue C, Destouches C, Philibert H, Fausser C, et al. Effect of the geometrical parameters of an HPGe detector on efficiency calculations using Monte Carlo methods, Nuclear Instruments and Methods in Physics Research Section A: Nucl. Instrum. Methods Phys. Res. A. 2022; 1039:167096. https://doi.org/10.1016/j.nima.2022.167096.
  • [12] Mohebian M, Pourimani R, Modarresi SM. Using MCNP Simulation for Self-absorption Correction in HPGe Spectrometry of Soil Samples. Iran J Sci Technol Trans Sci. 2019;43:3047–3052. https://doi.org/10.1007/s40995-019-00775-5
  • [13] Barba-Lobo A, Bolívar JP. A practical and general methodology for efficiency calibration of coaxial Ge detectors. Measurement. 2022;197:111295. https://doi.org/10.1016/j.measurement.2022.111295.
  • [14] Sostaric M, Babic D, Petrinec B, Zgorelec Z. Determination of gamma-ray self-attenuation correction in environmental samples by combining transmission measurements and Monte Carlo simulations. Appl. Radiat. Isot. 2016;113:110-116. https://doi.org/10.1016/j.apradiso.2016.04.012.
  • [15] Jodłowski P. Self-absorption correction in gamma-ray spectrometry of environmental samples - an overview of methods and correction values obtained for the selected geometries. Nukleonika. 2006;51(2): 21–25.
  • [16] Khater AEM, Ebaid YY. A simplified gamma-ray self-attenuation correction in bulk samples. Appl. Radiat. Isot. 2008;66:407–413.
  • [17] Pourimani R, Mohebian M, Modarresi SM. Assessment of the Soil Self-Attenuation Correction Factor to Determine the Efficiency of a High-Purity Germanium Detector. Iran J Sci Technol Trans Sci. 2020;44:311–317. https://doi.org/10.1007/s40995-020-00816-4.
  • [18] Eke C, Boztosun I. Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J Radioanal Nucl Chem. 2014; 301:103–108. https://doi.org/10.1007/s10967-014-3145-7.
  • [19] Barba-Lobo A, Mosqueda F, Bolívar JP. A general function for determining mass attenuation coefficients to correct self-absorption effects in samples measured by gamma spectrometry. Radiat. Phys. Chem. 2021;179:109247 https://doi.org/10.1016/j.radphyschem.2020.109247.
  • [20] McMahon CA, Fegan MF, Wong J, Long SC, Ryan TP, Colgan PA. Determination of self-absorption corrections for gamma analysis of environmental samples: comparing gamma-absorption curves and spiked matrix-matched samples. Appl. Radiat. Isot. 2004; 60 (2–4):571-577. https://doi.org/10.1016/j.apradiso.2003.11.081.
  • [21] Millsap DW, Landsberger S. Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl. Radiat. Isot. 2015;97:21-23. https://doi.org/10.1016/j.apradiso.2014.12.008.
  • [22] Dziri S, Nachab A, Nourreddine A, Sellam A, Pape A. Elemental composition effects on self-absorption for photons below 100 keV in gamma-ray spectrometry, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2014: 330:1-6. https://doi.org/10.1016/j.nimb.2014.02.116.
  • [23] Bonczyk M. Determination of 210Pb concentration in NORM waste – An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry. Radiat. Phys. Chem. 2018;148:1-4. https://doi.org/10.1016/j.radphyschem.2018.02.011.
  • [24] Barros LF, Pecequilo BRS. Self-attenuation factors in gamma-ray spectrometry of select sand samples from Camburi Beach, Vitória, Espírito Santo, Brazil. Radiat. Phys. Chem. 2014;95:339-341. https://doi.org/10.1016/j.radphyschem.2012.12.031.
  • [25] Misiak R, Hajduk R, Stobiński M, Bartyzel M, Szarłowicz K, Kubica K., & B. Self-absorption correction and efficiency calibration for radioactivity measurement of environmental samples by gamma-ray spectrometry. Nukleonika. 2011;56:23-28.
  • [26] Bouisset P, Lefèvre O, Cagnat X, Kerlau G, Ugron A, Calmet D. Direct gamma-X spectrometry measurement of 129I in environmental samples using experimental self-absorption corrections. Nucl. Instrum. Methods Phys. Res.,Sect. A. 1999;437(1):114-127.
  • [27] Eke C, Yildirim A. Experimental and Simulation Results of the Self-Absorption Correction Factors of Some Chemical Fertilizers in the Energy Range from 80 to 1332 keV. Bull. Russ. Acad. Sci. Phys. 2020;84:1012–1021. https://doi.org/10.3103/S1062873820080122.
  • [28] Pilleyre T, Sanzelle S, Miallier D, Fain D, Courtine F. Theoretical and experimental estimation of self-attenuation corrections in determination of 210Pb by γ-spectrometry with well Ge detector. Radiat. Meas. 2006;41(3):323-329. https://doi.org/10.1016/j.radmeas.2004.11.007.
  • [29] Bolivar JP, García-León M, García-Tenorio R. On self-attenuation corrections in gamma-ray spectrometry. Appl. Radiat. Isot. 1997;48(8):1125-1126. https://doi.org/10.1016/S0969-8043(97)00034-1.
  • [30] Eke C, Agar O, Boztosun I, Aslan A, Emsen B. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry. Kerntechnik. 2017;82 (1):136-139. https://doi.org/10.3139/124.110614.
  • [31] Jeffrey Cessna T, Daniel Golas B, Denis Bergeron E. Source self-attenuation in ionization chamber measurements of 57Co solutions. Appl. Radiat. Isot. 2016;109:402-404. https://doi.org/10.1016/j.apradiso.2015.12.019.
  • [32] Boshkova T, Minev L. Corrections for self-attenuation in gamma-ray spectrometry of bulk samples Appl. Radiat. Isot. 2001;54:777-783. https://doi.org/10.1016/S0969-8043(00)00319-5.
  • [33] Al-Masri MS, Hasan M, Al-Hamwi A, Amin Y, Doubal AW. Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV. J. Environ. Radioact. 2013;116:28-33. https://doi.org/10.1016/j.jenvrad.2012.09.008.
  • [34] Cutshall NH, Larsen IL, Olsen CR. Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl. Instruments Andm. 1983; 206:309-312.
  • [35] MC2 Analyzer, Available from:https://www.caen.it/products/mc2analyzer/ [cited 2022 October 12]
  • [36] Lurian AR, Millward GE, Sima O, Taylor A, Blake W. Self-attenuation corrections for Pb-210 in gamma-ray spectrometry using well and coaxial HPGe detectors. Appl. Radiat. Isot. 2018;134:151-156. https://doi.org/10.1016/j.apradiso.2017.06.048.
  • [37] Barrera M, Suarez-Llorens A, Ruiz MC, Alonso JJ, Vidal J. Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017;854:31-39. https://doi.org/10.1016/j.nima.2017.02.052.
There are 37 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Reyhan Özaydın Özkara 0000-0003-2699-1060

Canel Eke 0000-0002-6672-6467

Publication Date March 27, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Özaydın Özkara, R., & Eke, C. (2023). Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study. Türk Doğa Ve Fen Dergisi, 12(1), 76-81. https://doi.org/10.46810/tdfd.1193469
AMA Özaydın Özkara R, Eke C. Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study. TJNS. March 2023;12(1):76-81. doi:10.46810/tdfd.1193469
Chicago Özaydın Özkara, Reyhan, and Canel Eke. “Determination of Self-Absorption Correction Factors of Some Algae Samples: An Experimental Study”. Türk Doğa Ve Fen Dergisi 12, no. 1 (March 2023): 76-81. https://doi.org/10.46810/tdfd.1193469.
EndNote Özaydın Özkara R, Eke C (March 1, 2023) Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study. Türk Doğa ve Fen Dergisi 12 1 76–81.
IEEE R. Özaydın Özkara and C. Eke, “Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study”, TJNS, vol. 12, no. 1, pp. 76–81, 2023, doi: 10.46810/tdfd.1193469.
ISNAD Özaydın Özkara, Reyhan - Eke, Canel. “Determination of Self-Absorption Correction Factors of Some Algae Samples: An Experimental Study”. Türk Doğa ve Fen Dergisi 12/1 (March 2023), 76-81. https://doi.org/10.46810/tdfd.1193469.
JAMA Özaydın Özkara R, Eke C. Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study. TJNS. 2023;12:76–81.
MLA Özaydın Özkara, Reyhan and Canel Eke. “Determination of Self-Absorption Correction Factors of Some Algae Samples: An Experimental Study”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 1, 2023, pp. 76-81, doi:10.46810/tdfd.1193469.
Vancouver Özaydın Özkara R, Eke C. Determination of Self-absorption Correction Factors of Some Algae Samples: An Experimental study. TJNS. 2023;12(1):76-81.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.