Research Article
BibTex RIS Cite

Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar

Year 2023, Volume: 12 Issue: 4, 19 - 24, 28.12.2023
https://doi.org/10.46810/tdfd.1342972

Abstract

The purpose of this study is to investigate the effect of alkali dosage on the compressive strength and ultrasonic pulse velocity of alkali-activated ferrochrome slag/Portland mortar. A total of eight mortar mixtures were produced. While four of the mixtures contain 15% Portland cement, the binder material of the other four mixtures consists entirely of ferrochrome slag. These alkali-activated mortar mixtures were prepared with four alkali dosages (4, 6, 8, and 10). The alkali modulus of all mixtures was kept constant at 1.4. Compressive strength and ultrasonic pulse velocity tests were performed to examine the effect of alkali dosage on both PC-substituted and PC-free mortars. As the alkali dosage increased, the compressive strengths of both PC-substituted and unsubstituted mortar specimens increased. It was seen that the critical alkali dosage of the alkali-activated mortar was 6%. Compressive strength and UPV values of the mortar specimens increased significantly with PC substitution

References

  • Sedaghatdoost A, Behfarnia K, Bayati M, Vaezi M sadegh. Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures. J Build Eng 2019;26:100871. https://doi.org/10.1016/j.jobe.2019.100871.
  • Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res 2015;78:110–25. https://doi.org/10.1016/j.cemconres.2015.04.013.
  • Yön MŞ, Karataş M. Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag. J Build Eng 2022;61:105263.
  • Provis JL, Bernal SA. Geopolymers and Related Alkali-Activated Materials. Annu Rev Mater Res 2014;44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
  • Ulucan M, Alyamac KE. A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material. Environ Sci Pollut Res 2023. https://doi.org/10.1007/s11356-023-29197-y.
  • Provis JL. Alkali-activated materials. Cem Concr Res 2018. https://doi.org/10.1016/j.cemconres.2017.02.009.
  • Yön MŞ, Arslan F, Karatas M, Benli A. High-temperature and abrasion resistance of self-compacting mortars incorporating binary and ternary blends of silica fume and slag. Constr Build Mater 2022;355:129244.
  • Dener M, Karatas M, Mohabbi M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr Build Mater 2021;304:124671.
  • Dener M, Karatas M, Mohabbi M. High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate. Constr Build Mater 2021;290. https://doi.org/10.1016/j.conbuildmat.2021.123250.
  • Özcan A, Karakoç MB. The Resistance of Blast Furnace Slag- and Ferrochrome Slag-Based Geopolymer Concrete Against Acid Attack. Int J Civ Eng 2019;17:1571–83. https://doi.org/10.1007/s40999-019-00425-2.
  • Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R, Uʇur Toprak M. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 2014;72:283–92. https://doi.org/10.1016/j.conbuildmat.2014.09.021.
  • Mohabbi Yadollahi M, Dener M. Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag based cements. Eur J Environ Civ Eng 2019. https://doi.org/10.1080/19648189.2018.1557562.
  • Nath SK. Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater 2018;181:487–94. https://doi.org/10.1016/j.conbuildmat.2018.06.070.
  • Karahan O, Yakupoǧlu A. Resistance of alkali-activated slag mortar to abrasion and fire. Adv Cem Res 2011;23:289–97. https://doi.org/10.1680/adcr.2011.23.6.289.
  • Abubakr AE, Soliman AM, Diab SH. Effect of activator nature on the impact behaviour of Alkali-Activated slag mortar. Constr Build Mater 2020;257:119531. https://doi.org/10.1016/j.conbuildmat.2020.119531.
  • Fang S, Lam ESS, Li B, Wu B. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr Build Mater 2020;249. https://doi.org/10.1016/j.conbuildmat.2020.118799.
  • Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem Concr Res 2018;111:104–15. https://doi.org/10.1016/j.cemconres.2018.06.005.
  • Institution) TSE (Turkish S. TS EN 197-1: Cement Part 1: Composition, specification and conformity criteria for common cements 2012.
  • ASTM C109/C109M A. Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ) 1. Am Soc Test Mater 2007.
  • ASTM C597. Standard Test Method for Pulse Velocity Through Concrete. Am Soc Test Mater West Conshohocken, PA, USA 2016.
  • Saloni, Parveen, Yan Lim Y, Pham TM. Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties. Constr Build Mater 2021. https://doi.org/10.1016/j.conbuildmat.2021.124321.
Year 2023, Volume: 12 Issue: 4, 19 - 24, 28.12.2023
https://doi.org/10.46810/tdfd.1342972

Abstract

References

  • Sedaghatdoost A, Behfarnia K, Bayati M, Vaezi M sadegh. Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures. J Build Eng 2019;26:100871. https://doi.org/10.1016/j.jobe.2019.100871.
  • Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res 2015;78:110–25. https://doi.org/10.1016/j.cemconres.2015.04.013.
  • Yön MŞ, Karataş M. Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag. J Build Eng 2022;61:105263.
  • Provis JL, Bernal SA. Geopolymers and Related Alkali-Activated Materials. Annu Rev Mater Res 2014;44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
  • Ulucan M, Alyamac KE. A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material. Environ Sci Pollut Res 2023. https://doi.org/10.1007/s11356-023-29197-y.
  • Provis JL. Alkali-activated materials. Cem Concr Res 2018. https://doi.org/10.1016/j.cemconres.2017.02.009.
  • Yön MŞ, Arslan F, Karatas M, Benli A. High-temperature and abrasion resistance of self-compacting mortars incorporating binary and ternary blends of silica fume and slag. Constr Build Mater 2022;355:129244.
  • Dener M, Karatas M, Mohabbi M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate. Constr Build Mater 2021;304:124671.
  • Dener M, Karatas M, Mohabbi M. High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate. Constr Build Mater 2021;290. https://doi.org/10.1016/j.conbuildmat.2021.123250.
  • Özcan A, Karakoç MB. The Resistance of Blast Furnace Slag- and Ferrochrome Slag-Based Geopolymer Concrete Against Acid Attack. Int J Civ Eng 2019;17:1571–83. https://doi.org/10.1007/s40999-019-00425-2.
  • Karakoç MB, Türkmen I, Maraş MM, Kantarci F, Demirboʇa R, Uʇur Toprak M. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 2014;72:283–92. https://doi.org/10.1016/j.conbuildmat.2014.09.021.
  • Mohabbi Yadollahi M, Dener M. Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag based cements. Eur J Environ Civ Eng 2019. https://doi.org/10.1080/19648189.2018.1557562.
  • Nath SK. Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater 2018;181:487–94. https://doi.org/10.1016/j.conbuildmat.2018.06.070.
  • Karahan O, Yakupoǧlu A. Resistance of alkali-activated slag mortar to abrasion and fire. Adv Cem Res 2011;23:289–97. https://doi.org/10.1680/adcr.2011.23.6.289.
  • Abubakr AE, Soliman AM, Diab SH. Effect of activator nature on the impact behaviour of Alkali-Activated slag mortar. Constr Build Mater 2020;257:119531. https://doi.org/10.1016/j.conbuildmat.2020.119531.
  • Fang S, Lam ESS, Li B, Wu B. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr Build Mater 2020;249. https://doi.org/10.1016/j.conbuildmat.2020.118799.
  • Shi Z, Shi C, Wan S, Zhang Z. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars. Cem Concr Res 2018;111:104–15. https://doi.org/10.1016/j.cemconres.2018.06.005.
  • Institution) TSE (Turkish S. TS EN 197-1: Cement Part 1: Composition, specification and conformity criteria for common cements 2012.
  • ASTM C109/C109M A. Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ) 1. Am Soc Test Mater 2007.
  • ASTM C597. Standard Test Method for Pulse Velocity Through Concrete. Am Soc Test Mater West Conshohocken, PA, USA 2016.
  • Saloni, Parveen, Yan Lim Y, Pham TM. Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties. Constr Build Mater 2021. https://doi.org/10.1016/j.conbuildmat.2021.124321.
There are 21 citations in total.

Details

Primary Language English
Subjects Solution Chemistry
Journal Section Articles
Authors

Murat Dener 0000-0001-6430-8854

Early Pub Date December 28, 2023
Publication Date December 28, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Dener, M. (2023). Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar. Türk Doğa Ve Fen Dergisi, 12(4), 19-24. https://doi.org/10.46810/tdfd.1342972
AMA Dener M. Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar. TJNS. December 2023;12(4):19-24. doi:10.46810/tdfd.1342972
Chicago Dener, Murat. “Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar”. Türk Doğa Ve Fen Dergisi 12, no. 4 (December 2023): 19-24. https://doi.org/10.46810/tdfd.1342972.
EndNote Dener M (December 1, 2023) Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar. Türk Doğa ve Fen Dergisi 12 4 19–24.
IEEE M. Dener, “Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar”, TJNS, vol. 12, no. 4, pp. 19–24, 2023, doi: 10.46810/tdfd.1342972.
ISNAD Dener, Murat. “Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar”. Türk Doğa ve Fen Dergisi 12/4 (December 2023), 19-24. https://doi.org/10.46810/tdfd.1342972.
JAMA Dener M. Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar. TJNS. 2023;12:19–24.
MLA Dener, Murat. “Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 4, 2023, pp. 19-24, doi:10.46810/tdfd.1342972.
Vancouver Dener M. Optimizing The Na2O Dosage to Develop Mechanical Properties of Ferrochrome Slag-Based Alkali-Activated Mortar. TJNS. 2023;12(4):19-24.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.