Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 1, 98 - 103, 26.03.2024
https://doi.org/10.46810/tdfd.1371897

Abstract

Supporting Institution

Atatürk Üniversitesi, BAP (Bilimsel Araştırma Projeleri)

Project Number

FBA-2020-8494

References

  • Mu H, Xu S, Sun Q, Shi J, Zhang D, Wan D, Wei J. Research Progress of Quinoa Seeds (Chenopodium quinoa Willd.): Nutritional Components, Technological Treatment, and Application. Foods. 2023; 12(10), 2087.
  • Tang Y, Li X, Zhang B, Chen P.X, Liu R, Tsao R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoaWilld. genotypes. Food Chem. 2015; 166: 380–388. [CrossRef]
  • Aziz A, Akram N.A, Ashraf M. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol. Biochem. 2018; 123: 192–203. [CrossRef]
  • Pedrali D, Giupponi L, De la Peña-Armada R, Villanueva-Suárez M, Mateos-Aparicio I. The quinoa variety influences the nutritional and antioxidant profile rather than the geographic factors. Food Chem. 2023; 402, 133531. [CrossRef] [PubMed]
  • Pathan S, Siddiqui R.A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients. 2022; 14(3), 558.
  • Tan M, Temel S. Her Yönüyle Kkinoa Önemi, Kullanılması ve Yetiştiriciliği. Iksad Publishing House, Ankara; 2019.
  • Jacobsen SE. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int. 2003; 19(1-2): 167–177.
  • Cardozo A. Tapia M. Valor nutritivo. In: Tapia M., Gandarillos H., Alandia S., Cardozo A., Mujica A. (Eds.) Quinoa y kaniwa, cultivos Andinos. Bogota CIID, Oficina Rgiond para la america Lotina. 1979. pp. 149-192, ISBN: O344 88936- 200-9.
  • Kır A.E, Temel S. Sulu koşullarda farklı kinoa (Chenopodium quinoa Willd.) genotiplerinin tohum verimi ile bazı tarımsal özelliklerinin belirlenmesi. Iğdır Üniv. Fen Bilimleri Enst. Derg. 2017; 7(1): 353-361.
  • Tan M, Temel S. Erzurum ve Iğdır şartlarında yetiştirilen farklı kinoa genotiplerinin kuru madde verimi ve bazı özelliklerinin belirlenmesi. Iğdır Üni. Fen Bilimleri Enst. Der. 2017; 7(4): 257-263.
  • FAO. Plant Production and Protection Series. In: Hernandez, J.E, Leon, J. (Eds.), Neglected crops 1492 from a different perspective. 1994. No. 26, Available at http://www.fao.org/ docrep/T0646E/T0646E00.htm (accessed March 2014).
  • FAO. La Quinua: Cultivo milenario para contribuir a la se-guridad alimentaria mundial. Oficina Regional Para America Latina Y El Caribe, FAO, 2011; 37, 66. https://doi.org/10.1016/ j.jaridenv.2009.03.010F
  • Gonzalez J.A, Gallardo M, Hilal, M, Rosa, M. Prado F.E. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: Dry matter partitioning. Bot. Stud. 2009; 50(1): 35-42.
  • Hinojos L, González J.A, Barrios-Masias F. H, Fuentes F, Murphy K.M. Quinoa abiotic stress responses: A review. Plants. 2018; 7(4), 106.
  • Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D. Genetic diversity for mineral accumulation in the foliage of Chenopodium spp. Scientia Horticulturae. 2008; 118(4): 338-346.
  • Bermudez G.M.A, Jasan R, Pla R, Pignata M.L. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. Journal of Hazardous Materials. 2012; 213-214: 447-456.
  • Yaldız G, Şekeroğlu N. Tıbbi ve aromatik bitkilerin bazı ağır metallere tepkisi, Türk Bilimsel Derlemeler Dergisi. 2013; 6(1): 80- 84.
  • Arıkan E.N. Bazı ağır metallerce kirlenmiş tarım topraklarının çim bitkisi (Lolium perenne L.) kullanılarak fitoremediasyon yöntemleriyle doğal arıtımı [dissertation]. Nevşehir: Nevşehir Hacı Bektaş Veli University; 2021.
  • Amjad M, Iqbal M.M, Abbas G, Farooq A.B.U, Naeem M.A, Imran M, et al. Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environmental Geochemistry and Health. 2021; 1-14.
  • Hassan MJ, Zhang G, Zhu Z. Influence of cadmium toxicity on plant growth and Nitrogen Uptake in Rice as Affected by Nitrogen Form. J. Plant Nutr. 2008; 31: 251–262.
  • Çağlarırmak N, Hepçimen A. Z. Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda. 2010; 8(2): 31-35.
  • Özkan A. Antakya-Cilvegözü karayolu etrafındaki tarım arazilerinde ve bitkilerdeki ağır metal kirliliği. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2017; 32(3): 9–18.
  • Kabata-Pendias A. Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton. 2011.
  • Prasad M.N.V. Cadmium toxicity and tolerance in vasculer plants. Environmental and Experimental Botany. 1995; 35, 525–545.
  • Ramos I, Esteban E, Lucena J.J, Garate A. Cadmium uptake and subcellular distribution in plants os Lactuca sp. Cd- Mn Interaction. Plant Science. 2002; 162: 761– 767.
  • Jali P, Pradhan C, Das A.B. Effects of cadmium toxicity in plants: a review article. Scholars Academic Journal of Bioscienses. 2016; 4(12):1074-1081.
  • Benavides M.P, Gallego S. M, Tomaro M.L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology. 2005; 17(1): 21-34.
  • Nagajyot P, Lee K, Sreekanth T. Heavy metals, occurrence and toxicity for plants a review. Environmental Chemistry Letters. 2010; 8(3):199-216.
  • Kabata-Pendias A, Pendias H. Trace element in the soil and plants. CRC Press Florida. 1984.
  • Wang G, Su M.Y, Chen Y.H, Lin F.F, Luo D, Gao S.F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern. China Environ. Pollut. 2006; 144(1): 127-35.
  • Zheljazkov V.D, Craker L.E, Xing B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany. 2006; 58 (1-3): 9-16. DOI: 10.1016/j.envexpbot.2005.06.008
  • Mrozek Jr E, Funicelli N.A. Effect of zinc and lead on germination of Spartina alterniflora Loisel seeds at various salinities. Environmental and Experimental Botany. 1982; 22(1): 23-32.
  • Symeonidis L, McNeilly T, Bradshaw A.D. Differential tolerance of three cultivars of Agrostis capillarisL. to cadmium, copper, lead, nickel and zinc. New Phytologist., 1985; 101: 309 –315.
  • Dabas S. To study the effect of lead on efficiency of nitrogen fixation and nitrogen assimilation in Vigna radiata (L.) Wilczek. Ph.D. Thesis, M.D. University, Rohtak. 1992.
  • Çolak U. Gaziantep ilinde Ekimi Yapılan Ekmeklik Buğday Çeşitlerinde (Tosunbey, Ceyhan 99) Kurşun Stresinin Fizyolojik ve Morfolojik Etkileri ile Kurşuna Tolerans Düzeylerinin Belirlenmesi [dissertation]. Gaziantep: Gaziantep University; 2009.
  • Alım Z. Hümik Asit Uygulamalarının Ağır Metal Stresi Altında Yetiştirilen Terede Bitki Gelişimi ile Bazı Fizyolojik ve Biyokimyasal Özellikler Üzerine Etkileri [dissertation]. Erzurum: Atatürk University; 2020.
  • Yıldırım E, Ekinci M, Turan M, Ağar G, Örs S, Dursun A, Kul R, Balcı T. Impact of Cadmium and Lead Heavy Metal Stress on Plant Growth and Physiology of Rocket (Eruca sativa L.). KSU J. Agric Nat. 2019; 22(6): 843-850.
  • Lambrechts T, Lequeue G, Lobet G, Lutts S. Impact of cadmium and zinc on root system of Lolium perenne and Trifolium repens. Communications in Agricultural and Applied Biological Sciences. 2013; 78(1): 19-24.
  • Kaya C, Higgs D, Ince F, Amador B.M, Cakir A, Sakar E. Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J. Plant Nutrition. 2003; 26: 807-820.
  • Sahin U, Ekinci M, Ors S, Turan M, Yıldız S, Yıldırım E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae. 2018; 240, 196-204.
  • Caşka Kılıçaslan, S, Yıldırım E, Ekinci M. Kul R. Kuraklık stresinin fasulyede bitki Gelişimi, Bazı Fizyolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36 (2):264-273.
  • Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M. Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Molecular Ecology. 2000; 9:1319-1324.
  • Jayakumar K, Jaleel C.A, Vijayarengan P. Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turkish Journal of Biology. 2007; 31(3):127–136.
  • Soudek P, Katrusakova A, Sedlacek L, Petrova S, Koci V, Marsik P. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contaminiation and Toxicology. 2010; 59(2): 194-203.
  • Gül Z, Yazıcı A. Farklı Ağır Metal Uygulamalarının Tek Yıllık Çim (Lolium multiflorum) Bitki Gelişimi ve Fizyolojisi Üzerine Etkisi. MAS Journal of Applied Sciences. 6 (Özel Sayı), 2021; 1110-1117.
  • Tunc T, Sahin U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agricultural Water Management. 2015; 158:213-224.
  • Ehlert C, Maurel C, Tardieu F, Simonneau T. Aquaporin mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiology. 2009; 150(2), 1093-1104.
  • Bhaduri A.M, Fulekar M.H. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio-Technology. 2012; 11: 55–69.
  • Tunçtürk R, Tunçtürk M, Oral E. Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (Glycine max L.) bazı fizyolojik özellikleri üzerine rizobacterium (PGPR) uygulamalarının etkisi. ÇOMÜ Ziraat Fakültesi Dergisi. 2021; 9 (2): 359-368. DOI: 10.33202/comuagri.881226.
  • Aslam M.U, Raza M.A.S, Saleem M.F, Wagas M, Iqbal R, Ahmad S, Haider I. Improving strategic 327 growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Community Soil Science Plant. Anal. 2020; 51 (5): 1-16.
  • Kirecci O.A. Saccharomyces Cerevisiae’nın Gelişme Ortamına İlave Edilen Ağır Metallerin (Mn, Mg, Cd, Fe) Bazı Biyokimyasal Parametrelere Etkileri. KSU Doğa Bilimleri Dergisi. 2017; 20(3): 175- 184.
  • Sairam R.K, Srivastava G.C, Agarwal S, Meena R.C. Differences in Antioxidant Activity in Response to Salinity Stress in Tolerant and Susceptible Wheat Genotypes, Biol. Plant. 2005; 49: 85-91.
  • Kuşvuran Ş. Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar [dissertation]. Adana: Çukurova University; 2010.
  • Yaqoob H, Akram N.A, Iftikhar S, Ashraf M, Khalid N, Sadiq M, et al. Seed Pretreatment and Foliar Application of Proline Regulate Morphological, Physio-Biochemical Processes and Activity of Antioxidant Enzymes in Plants of Two Cultivars of Quinoa (Chenopodium quinoa Willd.). Plants. 2019; 8(12):588. https://doi.org/10.3390/plants8120588
  • Parvez S, Abbas G, Shahid M, Amja M, Hussain M, Asad S.A, et al. Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety. 2020; 187, 109814. https://doi.org/10.1016/j.ecoenv.2019.109814
  • Khalofah A, Migdadi H, El-Harty E. Antioxidant Enzymatic Activities and Growth Response of Quinoa (Chenopodium quinoa Willd) to Exogenous Selenium Application. Plants. 2021; 10: 719. https://doi.org/10.3390/plants10040719
  • Tuver G.Y, Ekinci M, Yildirim E. Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). Rend. Fis. Acc. Lincei. 2022.

The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.)

Year 2024, Volume: 13 Issue: 1, 98 - 103, 26.03.2024
https://doi.org/10.46810/tdfd.1371897

Abstract

The presence of soil affected by Cd and Pb and their metals is increasing daily. Quinoa is a plant that can grow in harsh conditions due to being a halophyte plant. This study was planned to examine the effects of lead and cadmium metals, two of the most common metals today, on plant growth, physiology and some biochemical properties of quinoa. Within the scope of the study, heavy metal applications were made as 1 control (no application), 4 doses of Cd (50, 100, 150 and 200 mg/kg), and 4 doses of lead (500, 1000, 1500, 2000 mg/kg). In this study, which was carried out in Atatürk University, Plant Production and Application Center greenhouse conditions, it is observed that the metals applied negatively affected the parameters in the plant, and cadmium metal had a more toxic effect than lead metal. It is determined that the fresh weight of the plant lost 62% at the Cd 200 level and 45% at the Pb 2000 level compared to the control group.

Project Number

FBA-2020-8494

References

  • Mu H, Xu S, Sun Q, Shi J, Zhang D, Wan D, Wei J. Research Progress of Quinoa Seeds (Chenopodium quinoa Willd.): Nutritional Components, Technological Treatment, and Application. Foods. 2023; 12(10), 2087.
  • Tang Y, Li X, Zhang B, Chen P.X, Liu R, Tsao R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoaWilld. genotypes. Food Chem. 2015; 166: 380–388. [CrossRef]
  • Aziz A, Akram N.A, Ashraf M. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol. Biochem. 2018; 123: 192–203. [CrossRef]
  • Pedrali D, Giupponi L, De la Peña-Armada R, Villanueva-Suárez M, Mateos-Aparicio I. The quinoa variety influences the nutritional and antioxidant profile rather than the geographic factors. Food Chem. 2023; 402, 133531. [CrossRef] [PubMed]
  • Pathan S, Siddiqui R.A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients. 2022; 14(3), 558.
  • Tan M, Temel S. Her Yönüyle Kkinoa Önemi, Kullanılması ve Yetiştiriciliği. Iksad Publishing House, Ankara; 2019.
  • Jacobsen SE. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int. 2003; 19(1-2): 167–177.
  • Cardozo A. Tapia M. Valor nutritivo. In: Tapia M., Gandarillos H., Alandia S., Cardozo A., Mujica A. (Eds.) Quinoa y kaniwa, cultivos Andinos. Bogota CIID, Oficina Rgiond para la america Lotina. 1979. pp. 149-192, ISBN: O344 88936- 200-9.
  • Kır A.E, Temel S. Sulu koşullarda farklı kinoa (Chenopodium quinoa Willd.) genotiplerinin tohum verimi ile bazı tarımsal özelliklerinin belirlenmesi. Iğdır Üniv. Fen Bilimleri Enst. Derg. 2017; 7(1): 353-361.
  • Tan M, Temel S. Erzurum ve Iğdır şartlarında yetiştirilen farklı kinoa genotiplerinin kuru madde verimi ve bazı özelliklerinin belirlenmesi. Iğdır Üni. Fen Bilimleri Enst. Der. 2017; 7(4): 257-263.
  • FAO. Plant Production and Protection Series. In: Hernandez, J.E, Leon, J. (Eds.), Neglected crops 1492 from a different perspective. 1994. No. 26, Available at http://www.fao.org/ docrep/T0646E/T0646E00.htm (accessed March 2014).
  • FAO. La Quinua: Cultivo milenario para contribuir a la se-guridad alimentaria mundial. Oficina Regional Para America Latina Y El Caribe, FAO, 2011; 37, 66. https://doi.org/10.1016/ j.jaridenv.2009.03.010F
  • Gonzalez J.A, Gallardo M, Hilal, M, Rosa, M. Prado F.E. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: Dry matter partitioning. Bot. Stud. 2009; 50(1): 35-42.
  • Hinojos L, González J.A, Barrios-Masias F. H, Fuentes F, Murphy K.M. Quinoa abiotic stress responses: A review. Plants. 2018; 7(4), 106.
  • Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D. Genetic diversity for mineral accumulation in the foliage of Chenopodium spp. Scientia Horticulturae. 2008; 118(4): 338-346.
  • Bermudez G.M.A, Jasan R, Pla R, Pignata M.L. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. Journal of Hazardous Materials. 2012; 213-214: 447-456.
  • Yaldız G, Şekeroğlu N. Tıbbi ve aromatik bitkilerin bazı ağır metallere tepkisi, Türk Bilimsel Derlemeler Dergisi. 2013; 6(1): 80- 84.
  • Arıkan E.N. Bazı ağır metallerce kirlenmiş tarım topraklarının çim bitkisi (Lolium perenne L.) kullanılarak fitoremediasyon yöntemleriyle doğal arıtımı [dissertation]. Nevşehir: Nevşehir Hacı Bektaş Veli University; 2021.
  • Amjad M, Iqbal M.M, Abbas G, Farooq A.B.U, Naeem M.A, Imran M, et al. Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environmental Geochemistry and Health. 2021; 1-14.
  • Hassan MJ, Zhang G, Zhu Z. Influence of cadmium toxicity on plant growth and Nitrogen Uptake in Rice as Affected by Nitrogen Form. J. Plant Nutr. 2008; 31: 251–262.
  • Çağlarırmak N, Hepçimen A. Z. Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda. 2010; 8(2): 31-35.
  • Özkan A. Antakya-Cilvegözü karayolu etrafındaki tarım arazilerinde ve bitkilerdeki ağır metal kirliliği. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 2017; 32(3): 9–18.
  • Kabata-Pendias A. Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton. 2011.
  • Prasad M.N.V. Cadmium toxicity and tolerance in vasculer plants. Environmental and Experimental Botany. 1995; 35, 525–545.
  • Ramos I, Esteban E, Lucena J.J, Garate A. Cadmium uptake and subcellular distribution in plants os Lactuca sp. Cd- Mn Interaction. Plant Science. 2002; 162: 761– 767.
  • Jali P, Pradhan C, Das A.B. Effects of cadmium toxicity in plants: a review article. Scholars Academic Journal of Bioscienses. 2016; 4(12):1074-1081.
  • Benavides M.P, Gallego S. M, Tomaro M.L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology. 2005; 17(1): 21-34.
  • Nagajyot P, Lee K, Sreekanth T. Heavy metals, occurrence and toxicity for plants a review. Environmental Chemistry Letters. 2010; 8(3):199-216.
  • Kabata-Pendias A, Pendias H. Trace element in the soil and plants. CRC Press Florida. 1984.
  • Wang G, Su M.Y, Chen Y.H, Lin F.F, Luo D, Gao S.F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern. China Environ. Pollut. 2006; 144(1): 127-35.
  • Zheljazkov V.D, Craker L.E, Xing B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany. 2006; 58 (1-3): 9-16. DOI: 10.1016/j.envexpbot.2005.06.008
  • Mrozek Jr E, Funicelli N.A. Effect of zinc and lead on germination of Spartina alterniflora Loisel seeds at various salinities. Environmental and Experimental Botany. 1982; 22(1): 23-32.
  • Symeonidis L, McNeilly T, Bradshaw A.D. Differential tolerance of three cultivars of Agrostis capillarisL. to cadmium, copper, lead, nickel and zinc. New Phytologist., 1985; 101: 309 –315.
  • Dabas S. To study the effect of lead on efficiency of nitrogen fixation and nitrogen assimilation in Vigna radiata (L.) Wilczek. Ph.D. Thesis, M.D. University, Rohtak. 1992.
  • Çolak U. Gaziantep ilinde Ekimi Yapılan Ekmeklik Buğday Çeşitlerinde (Tosunbey, Ceyhan 99) Kurşun Stresinin Fizyolojik ve Morfolojik Etkileri ile Kurşuna Tolerans Düzeylerinin Belirlenmesi [dissertation]. Gaziantep: Gaziantep University; 2009.
  • Alım Z. Hümik Asit Uygulamalarının Ağır Metal Stresi Altında Yetiştirilen Terede Bitki Gelişimi ile Bazı Fizyolojik ve Biyokimyasal Özellikler Üzerine Etkileri [dissertation]. Erzurum: Atatürk University; 2020.
  • Yıldırım E, Ekinci M, Turan M, Ağar G, Örs S, Dursun A, Kul R, Balcı T. Impact of Cadmium and Lead Heavy Metal Stress on Plant Growth and Physiology of Rocket (Eruca sativa L.). KSU J. Agric Nat. 2019; 22(6): 843-850.
  • Lambrechts T, Lequeue G, Lobet G, Lutts S. Impact of cadmium and zinc on root system of Lolium perenne and Trifolium repens. Communications in Agricultural and Applied Biological Sciences. 2013; 78(1): 19-24.
  • Kaya C, Higgs D, Ince F, Amador B.M, Cakir A, Sakar E. Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J. Plant Nutrition. 2003; 26: 807-820.
  • Sahin U, Ekinci M, Ors S, Turan M, Yıldız S, Yıldırım E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae. 2018; 240, 196-204.
  • Caşka Kılıçaslan, S, Yıldırım E, Ekinci M. Kul R. Kuraklık stresinin fasulyede bitki Gelişimi, Bazı Fizyolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36 (2):264-273.
  • Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M. Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Molecular Ecology. 2000; 9:1319-1324.
  • Jayakumar K, Jaleel C.A, Vijayarengan P. Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turkish Journal of Biology. 2007; 31(3):127–136.
  • Soudek P, Katrusakova A, Sedlacek L, Petrova S, Koci V, Marsik P. Effect of heavy metals on inhibition of root elongation in 23 cultivars of flax (Linum usitatissimum L.). Archives of Environmental Contaminiation and Toxicology. 2010; 59(2): 194-203.
  • Gül Z, Yazıcı A. Farklı Ağır Metal Uygulamalarının Tek Yıllık Çim (Lolium multiflorum) Bitki Gelişimi ve Fizyolojisi Üzerine Etkisi. MAS Journal of Applied Sciences. 6 (Özel Sayı), 2021; 1110-1117.
  • Tunc T, Sahin U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agricultural Water Management. 2015; 158:213-224.
  • Ehlert C, Maurel C, Tardieu F, Simonneau T. Aquaporin mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiology. 2009; 150(2), 1093-1104.
  • Bhaduri A.M, Fulekar M.H. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio-Technology. 2012; 11: 55–69.
  • Tunçtürk R, Tunçtürk M, Oral E. Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (Glycine max L.) bazı fizyolojik özellikleri üzerine rizobacterium (PGPR) uygulamalarının etkisi. ÇOMÜ Ziraat Fakültesi Dergisi. 2021; 9 (2): 359-368. DOI: 10.33202/comuagri.881226.
  • Aslam M.U, Raza M.A.S, Saleem M.F, Wagas M, Iqbal R, Ahmad S, Haider I. Improving strategic 327 growth stage-based drought tolerance in quinoa by rhizobacterial inoculation. Community Soil Science Plant. Anal. 2020; 51 (5): 1-16.
  • Kirecci O.A. Saccharomyces Cerevisiae’nın Gelişme Ortamına İlave Edilen Ağır Metallerin (Mn, Mg, Cd, Fe) Bazı Biyokimyasal Parametrelere Etkileri. KSU Doğa Bilimleri Dergisi. 2017; 20(3): 175- 184.
  • Sairam R.K, Srivastava G.C, Agarwal S, Meena R.C. Differences in Antioxidant Activity in Response to Salinity Stress in Tolerant and Susceptible Wheat Genotypes, Biol. Plant. 2005; 49: 85-91.
  • Kuşvuran Ş. Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar [dissertation]. Adana: Çukurova University; 2010.
  • Yaqoob H, Akram N.A, Iftikhar S, Ashraf M, Khalid N, Sadiq M, et al. Seed Pretreatment and Foliar Application of Proline Regulate Morphological, Physio-Biochemical Processes and Activity of Antioxidant Enzymes in Plants of Two Cultivars of Quinoa (Chenopodium quinoa Willd.). Plants. 2019; 8(12):588. https://doi.org/10.3390/plants8120588
  • Parvez S, Abbas G, Shahid M, Amja M, Hussain M, Asad S.A, et al. Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety. 2020; 187, 109814. https://doi.org/10.1016/j.ecoenv.2019.109814
  • Khalofah A, Migdadi H, El-Harty E. Antioxidant Enzymatic Activities and Growth Response of Quinoa (Chenopodium quinoa Willd) to Exogenous Selenium Application. Plants. 2021; 10: 719. https://doi.org/10.3390/plants10040719
  • Tuver G.Y, Ekinci M, Yildirim E. Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). Rend. Fis. Acc. Lincei. 2022.
There are 57 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Zeynep Gül 0000-0003-2961-1473

Abdullah Yazıcı 0000-0003-0362-2799

Özlem Çakır 0000-0002-5080-7721

Project Number FBA-2020-8494
Early Pub Date March 26, 2024
Publication Date March 26, 2024
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

APA Gül, Z., Yazıcı, A., & Çakır, Ö. (2024). The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.). Türk Doğa Ve Fen Dergisi, 13(1), 98-103. https://doi.org/10.46810/tdfd.1371897
AMA Gül Z, Yazıcı A, Çakır Ö. The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.). TJNS. March 2024;13(1):98-103. doi:10.46810/tdfd.1371897
Chicago Gül, Zeynep, Abdullah Yazıcı, and Özlem Çakır. “The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.)”. Türk Doğa Ve Fen Dergisi 13, no. 1 (March 2024): 98-103. https://doi.org/10.46810/tdfd.1371897.
EndNote Gül Z, Yazıcı A, Çakır Ö (March 1, 2024) The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.). Türk Doğa ve Fen Dergisi 13 1 98–103.
IEEE Z. Gül, A. Yazıcı, and Ö. Çakır, “The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.)”, TJNS, vol. 13, no. 1, pp. 98–103, 2024, doi: 10.46810/tdfd.1371897.
ISNAD Gül, Zeynep et al. “The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.)”. Türk Doğa ve Fen Dergisi 13/1 (March 2024), 98-103. https://doi.org/10.46810/tdfd.1371897.
JAMA Gül Z, Yazıcı A, Çakır Ö. The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.). TJNS. 2024;13:98–103.
MLA Gül, Zeynep et al. “The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.)”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 1, 2024, pp. 98-103, doi:10.46810/tdfd.1371897.
Vancouver Gül Z, Yazıcı A, Çakır Ö. The Effect of Cadmium and Lead Exposure on the Development and Physical Structure of Quinoa (Chenopodium Quinoa Willd.). TJNS. 2024;13(1):98-103.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.