Research Article
BibTex RIS Cite

Algılama Uygulamaları için Yüksek Hassasiyet ve Kalite Faktörüne Sahip Terahertz Metamalzeme Soğurucu Tabanlı Kırılma İndeks Sensörü

Year 2024, Volume: 13 Issue: 2, 61 - 68, 28.06.2024
https://doi.org/10.46810/tdfd.1412214

Abstract

Bu araştırma, kırılma indisi algılaması olarak altın-silikon (optik)-altın tasarımından oluşan basit ve üretimi kolay bir yapıya sahip terahertz metamalzeme soğurucuyu (TMA) tanımlamakta ve değerlendirmektedir. Tespit rejimindeki yüksek alan sınırlaması nedeniyle, elektromanyetik (EM) dalganın emilimi, 65,77'lik önemli bir kalite faktörü (Q-Faktörü) ve 21,49'luk bir başarı rakamı olan FoM dahil olmak üzere, 3,719 THz frekansta %99,40'a ulaşır. TMA, 1,215 THz/RIU'luk makul bir hassasiyet sergileyen bir kırılma indisi sensörü (RIS) olarak kullanılabilir. Metamalzeme soğurucu tabanlı sensör, çevredeki ortamdaki kırılma indisi değişikliklerine (1,00 ila 1,05) karşı hassastır. Soğurma mekanizması için, temel soğurma zirvesi esas olarak elektrik ve manyetik dipol rezonanslarının eşzamanlı oluşumundan kaynaklanmaktadır. Önerilen soğurucu, algılama ve tespit uygulamaları nedeniyle mükemmel bir RIS olma özelliğine sahiptir.

Supporting Institution

Bayburt Üniversitesi

Project Number

2023/69002-04

Thanks

Bu araştırma Bayburt Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü'nce desteklenmiştir. Proje Numarası:2023/69002-04.

References

  • Saadeldin AS, Hameed MF, Elkaramany EM, Obayya SS. Highly sensitive terahertz metamaterial sensor. IEEE Sensors Journal. 2019 May 22;19(18):7993-9.
  • Zhang Z, Ding H, Yan X, Liang L, Wei D, Wang M, Yang Q, Yao J. Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency. Optical Materials Express. 2018 Mar 1;8(3):659-67.
  • Palermo G, Lio GE, Esposito M, Ricciardi L, Manoccio M, Tasco V, Passaseo A, De Luca A, Strangi G. Biomolecular sensing at the interface between chiral metasurfaces and hyperbolic metamaterials. ACS applied materials & interfaces. 2020 Jun 18;12(27):30181-8.
  • He X, Li S, Yang X, Shi S, Wu F, Jiang J. High-sensitive dual-band sensor based on microsize circular ring complementary terahertz metamaterial. Journal of Electromagnetic Waves and Applications. 2017 Jan 2;31(1):91-100.
  • Geng Z, Zhang X, Fan Z, Lv X, Chen H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Scientific reports. 2017 Nov 27;7(1):16378.
  • Li Y, Chen X, Hu F, Li D, Teng H, Rong Q, Zhang W, Han J, Liang H. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. Journal of Physics D: Applied Physics. 2019 Jan 2;52(9):095105.
  • Park JW, Vu DL, Zheng HY, Rhee JY, Kim KW, Lee YP. THz-metamaterial absorbers. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2013 Jan 18;4(1):015001.
  • Shrekenhamer D, Montoya J, Krishna S, Padilla WJ. Four‐color Metamaterial absorber THz spatial light modulator. Advanced Optical Materials. 2013 Dec;1(12):905-9.
  • Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters. 2014 Jul 14;105(2).
  • Grant J, Escorcia‐Carranza I, Li C, McCrindle IJ, Gough J, Cumming DR. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro‐bolometer. Laser & Photonics Reviews. 2013 Nov;7(6):1043-8.
  • Carranza IE, Grant J, Gough J, Cumming DR. Metamaterial-based terahertz imaging. IEEE Transactions on Terahertz Science and Technology. 2015 Aug 21;5(6):892-901.
  • Duan G, Schalch J, Zhao X, Li A, Chen C, Averitt RD, Zhang X. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical. 2019 Mar 1;287:21-8.
  • Anik MH, Mahmud S, Mahmood KS, Isti MI, Talukder H, Biswas SK. Numerical investigation of a gear-shaped triple-band perfect terahertz metamaterial absorber as biochemical sensor. IEEE Sensors Journal. 2022 Aug 8;22(18):17819-29.
  • Cheng D, He X, Huang X, Zhang B, Liu G, Shu G, Fang C, Wang J, Luo Y. Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. International Journal of RF and Microwave Computer‐Aided Engineering. 2018 Sep;28(7):e21448.
  • Shen S, Liu X, Shen Y, Qu J, Pickwell‐MacPherson E, Wei X, Sun Y. Recent advances in the development of materials for terahertz metamaterial sensing. Advanced Optical Materials. 2022 Jan;10(1):2101008.
  • Banerjee S, Dutta P, Basu S, Mishra SK, Appasani B, Nanda S, Abdulkarim YI, Muhammadsharif FF, Dong J, Jha AV, Bizon N. A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry. 2022 Dec 22;15(1):24.
  • Mehrotra P. Biosensors and their applications–A review. Journal of oral biology and craniofacial research. 2016 May 1;6(2):153-9.
  • Liu J, Fan L, Su J, Yang S, Luo H, Shen X, Ding F. Study on a terahertz biosensor based on graphene-metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022 Nov 5;280:121527.
  • Guo W, Zhai L, El-Bahy ZM, Lu Z, Li L, Elnaggar AY, Ibrahim MM, Cao H, Lin J, Wang B. Terahertz metamaterial biosensor based on open square ring. Advanced Composites and Hybrid Materials. 2023 Jun;6(3):92.
  • Jianjun L, Lanlan F. Development of a tunable terahertz absorber based on temperature control. Microwave and Optical Technology Letters. 2020 Apr;62(4):1681-5.
  • Zou H, Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Optical Materials. 2019 Feb 1;88:674-9.
  • Banerjee S, Nath U, Jha AV, Pahadsingh S, Appasani B, Bizon N, Srinivasulu A. A terahertz metamaterial absorber based refractive index sensor with high quality factor. In2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) 2021 Jul 1 (pp. 1-4). IEEE.
  • Bai J, Shen W, Wang S, Ge M, Chen T, Shen P, Chang S. An ultra-thin multiband terahertz metamaterial absorber and sensing applications. Optical and Quantum Electronics. 2021 Sep;53(9):506.
  • Yahiaoui R, Tan S, Cong L, Singh R, Yan F, Zhang W. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics. 2015 Aug 28;118(8).
  • Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Applied Physics Letters. 2014 Oct 27;105(17).
  • Li Y, Chen X, Hu F, Li D, Teng H, Rong Q, Zhang W, Han J, Liang H. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. Journal of Physics D: Applied Physics. 2019 Jan 2;52(9):095105.
  • Shen F, Qin J, Han Z. Planar antenna array as a highly sensitive terahertz sensor. Applied optics. 2019 Jan 20;58(3):540-4.
  • Yu J, Lang T, Chen H. All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics. 2021 May 14;8(5): 164).
  • Wang BX, He Y, Lou P, Xing W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Advances. 2020;2(2):763-9.
  • Palik ED, editor. Handbook of optical constants of solids. Academic press; 1998.
  • Kong X, Jiang S, Kong L, Wang Q, Hu H, Zhang X, Zhao X. Transparent metamaterial absorber with broadband radar cross‐section (RCS) reduction for solar arrays. IET Microwaves, Antennas & Propagation. 2020 Oct;14(13):1580-6.
  • Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H. Polarization-independent wide-angle triple-band metamaterial absorber. Optics express. 2011 May 9;19(10):9401-7.
  • Banerjee S, Nath U, Dutta P, Jha AV, Appasani B, Bizon N. A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions. 2021 Nov 2;6(4):78.
  • Guddala S, Kumar R, Ramakrishna SA. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Applied Physics Letters. 2015 Mar 16;106(11).
  • Zhao M, Xu J, Zhao J. Design and analysis of dual‐band FSS based on equivalent circuit. International Journal of RF and Microwave Computer‐Aided Engineering. 2022 Dec;32(12):e23405.
  • Keysight Headquarters [Internet], Available from: https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
  • Islam MS, Samsuzzaman M, Beng GK, Misran N, Amin N, Islam MT. A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access. 2020 Apr 6;8:68239-53.
  • Singh AK, Abegaonkar MP, Koul SK. Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Transactions on Electromagnetic Compatibility. 2018 Jun 20;61(3):878-86.
  • Hakim ML, Alam T, Islam MT, Alsaif H, Soliman MS. Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (mm-Wave) band applications. Measurement. 2023 Mar 31;210:112545.

Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications

Year 2024, Volume: 13 Issue: 2, 61 - 68, 28.06.2024
https://doi.org/10.46810/tdfd.1412214

Abstract

This research describes and assesses a terahertz metamaterial absorber (TMA) with a simple and easy-to-produce structure consisting of gold-silicon (optical)-gold design as a refractive index sensing. Due to the high field limitation in the detection regime, electromagnetic (EM) wave’s absorption reaches 99.40% at a frequency of 3.719 THz, including a significant quality factor (Q-Factor) of 65.77 and a figure of merit, FoM, of 21.49. The TMA has an remarkable sensitivity of 1.215 THz/RIU and can be used as a refractive index sensor (RIS). The proposed metamaterial absorber-based sensor is susceptible to refractive index changes (1.00 to 1.05) in the surrounding medium. For the physical absorption mechanism, the fundamental absorption peak is mainly due to the simultaneous occurrence of electric and magnetic dipole resonances. The proposed absorber has the feature of being an excellent RIS due to its sensing and detection applications.

Supporting Institution

Bayburt Üniversitesi

Project Number

2023/69002-04

Thanks

This research has been supported by Bayburt University Scientific Research Projects Coordination Department, Project Number:2023/69002-04.

References

  • Saadeldin AS, Hameed MF, Elkaramany EM, Obayya SS. Highly sensitive terahertz metamaterial sensor. IEEE Sensors Journal. 2019 May 22;19(18):7993-9.
  • Zhang Z, Ding H, Yan X, Liang L, Wei D, Wang M, Yang Q, Yao J. Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency. Optical Materials Express. 2018 Mar 1;8(3):659-67.
  • Palermo G, Lio GE, Esposito M, Ricciardi L, Manoccio M, Tasco V, Passaseo A, De Luca A, Strangi G. Biomolecular sensing at the interface between chiral metasurfaces and hyperbolic metamaterials. ACS applied materials & interfaces. 2020 Jun 18;12(27):30181-8.
  • He X, Li S, Yang X, Shi S, Wu F, Jiang J. High-sensitive dual-band sensor based on microsize circular ring complementary terahertz metamaterial. Journal of Electromagnetic Waves and Applications. 2017 Jan 2;31(1):91-100.
  • Geng Z, Zhang X, Fan Z, Lv X, Chen H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Scientific reports. 2017 Nov 27;7(1):16378.
  • Li Y, Chen X, Hu F, Li D, Teng H, Rong Q, Zhang W, Han J, Liang H. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. Journal of Physics D: Applied Physics. 2019 Jan 2;52(9):095105.
  • Park JW, Vu DL, Zheng HY, Rhee JY, Kim KW, Lee YP. THz-metamaterial absorbers. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2013 Jan 18;4(1):015001.
  • Shrekenhamer D, Montoya J, Krishna S, Padilla WJ. Four‐color Metamaterial absorber THz spatial light modulator. Advanced Optical Materials. 2013 Dec;1(12):905-9.
  • Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters. 2014 Jul 14;105(2).
  • Grant J, Escorcia‐Carranza I, Li C, McCrindle IJ, Gough J, Cumming DR. A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro‐bolometer. Laser & Photonics Reviews. 2013 Nov;7(6):1043-8.
  • Carranza IE, Grant J, Gough J, Cumming DR. Metamaterial-based terahertz imaging. IEEE Transactions on Terahertz Science and Technology. 2015 Aug 21;5(6):892-901.
  • Duan G, Schalch J, Zhao X, Li A, Chen C, Averitt RD, Zhang X. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical. 2019 Mar 1;287:21-8.
  • Anik MH, Mahmud S, Mahmood KS, Isti MI, Talukder H, Biswas SK. Numerical investigation of a gear-shaped triple-band perfect terahertz metamaterial absorber as biochemical sensor. IEEE Sensors Journal. 2022 Aug 8;22(18):17819-29.
  • Cheng D, He X, Huang X, Zhang B, Liu G, Shu G, Fang C, Wang J, Luo Y. Terahertz biosensing metamaterial absorber for virus detection based on spoof surface plasmon polaritons. International Journal of RF and Microwave Computer‐Aided Engineering. 2018 Sep;28(7):e21448.
  • Shen S, Liu X, Shen Y, Qu J, Pickwell‐MacPherson E, Wei X, Sun Y. Recent advances in the development of materials for terahertz metamaterial sensing. Advanced Optical Materials. 2022 Jan;10(1):2101008.
  • Banerjee S, Dutta P, Basu S, Mishra SK, Appasani B, Nanda S, Abdulkarim YI, Muhammadsharif FF, Dong J, Jha AV, Bizon N. A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry. 2022 Dec 22;15(1):24.
  • Mehrotra P. Biosensors and their applications–A review. Journal of oral biology and craniofacial research. 2016 May 1;6(2):153-9.
  • Liu J, Fan L, Su J, Yang S, Luo H, Shen X, Ding F. Study on a terahertz biosensor based on graphene-metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022 Nov 5;280:121527.
  • Guo W, Zhai L, El-Bahy ZM, Lu Z, Li L, Elnaggar AY, Ibrahim MM, Cao H, Lin J, Wang B. Terahertz metamaterial biosensor based on open square ring. Advanced Composites and Hybrid Materials. 2023 Jun;6(3):92.
  • Jianjun L, Lanlan F. Development of a tunable terahertz absorber based on temperature control. Microwave and Optical Technology Letters. 2020 Apr;62(4):1681-5.
  • Zou H, Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Optical Materials. 2019 Feb 1;88:674-9.
  • Banerjee S, Nath U, Jha AV, Pahadsingh S, Appasani B, Bizon N, Srinivasulu A. A terahertz metamaterial absorber based refractive index sensor with high quality factor. In2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) 2021 Jul 1 (pp. 1-4). IEEE.
  • Bai J, Shen W, Wang S, Ge M, Chen T, Shen P, Chang S. An ultra-thin multiband terahertz metamaterial absorber and sensing applications. Optical and Quantum Electronics. 2021 Sep;53(9):506.
  • Yahiaoui R, Tan S, Cong L, Singh R, Yan F, Zhang W. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics. 2015 Aug 28;118(8).
  • Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Applied Physics Letters. 2014 Oct 27;105(17).
  • Li Y, Chen X, Hu F, Li D, Teng H, Rong Q, Zhang W, Han J, Liang H. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. Journal of Physics D: Applied Physics. 2019 Jan 2;52(9):095105.
  • Shen F, Qin J, Han Z. Planar antenna array as a highly sensitive terahertz sensor. Applied optics. 2019 Jan 20;58(3):540-4.
  • Yu J, Lang T, Chen H. All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics. 2021 May 14;8(5): 164).
  • Wang BX, He Y, Lou P, Xing W. Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Advances. 2020;2(2):763-9.
  • Palik ED, editor. Handbook of optical constants of solids. Academic press; 1998.
  • Kong X, Jiang S, Kong L, Wang Q, Hu H, Zhang X, Zhao X. Transparent metamaterial absorber with broadband radar cross‐section (RCS) reduction for solar arrays. IET Microwaves, Antennas & Propagation. 2020 Oct;14(13):1580-6.
  • Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H. Polarization-independent wide-angle triple-band metamaterial absorber. Optics express. 2011 May 9;19(10):9401-7.
  • Banerjee S, Nath U, Dutta P, Jha AV, Appasani B, Bizon N. A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions. 2021 Nov 2;6(4):78.
  • Guddala S, Kumar R, Ramakrishna SA. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Applied Physics Letters. 2015 Mar 16;106(11).
  • Zhao M, Xu J, Zhao J. Design and analysis of dual‐band FSS based on equivalent circuit. International Journal of RF and Microwave Computer‐Aided Engineering. 2022 Dec;32(12):e23405.
  • Keysight Headquarters [Internet], Available from: https://www.keysight.com/us/en/products/software/pathwave-design-software/pathwave-advanced-design-system.html
  • Islam MS, Samsuzzaman M, Beng GK, Misran N, Amin N, Islam MT. A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications. IEEE Access. 2020 Apr 6;8:68239-53.
  • Singh AK, Abegaonkar MP, Koul SK. Dual-and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Transactions on Electromagnetic Compatibility. 2018 Jun 20;61(3):878-86.
  • Hakim ML, Alam T, Islam MT, Alsaif H, Soliman MS. Polarization-independent fractal square splits ring resonator (FSSRR) multiband metamaterial absorber/artificial magnetic conductor/sensor for Ku/K/Ka/5G (mm-Wave) band applications. Measurement. 2023 Mar 31;210:112545.
There are 39 citations in total.

Details

Primary Language English
Subjects Radio Frequency Engineering, Electronics, Sensors and Digital Hardware (Other)
Journal Section Articles
Authors

Ahmet Teber 0000-0002-7361-2302

Project Number 2023/69002-04
Early Pub Date June 28, 2024
Publication Date June 28, 2024
Submission Date December 30, 2023
Acceptance Date May 24, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Teber, A. (2024). Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications. Türk Doğa Ve Fen Dergisi, 13(2), 61-68. https://doi.org/10.46810/tdfd.1412214
AMA Teber A. Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications. TJNS. June 2024;13(2):61-68. doi:10.46810/tdfd.1412214
Chicago Teber, Ahmet. “Refractive Index Sensor Based on Terahertz Metamaterial Absorber With High Sensitivity and Quality Factor for Sensing Applications”. Türk Doğa Ve Fen Dergisi 13, no. 2 (June 2024): 61-68. https://doi.org/10.46810/tdfd.1412214.
EndNote Teber A (June 1, 2024) Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications. Türk Doğa ve Fen Dergisi 13 2 61–68.
IEEE A. Teber, “Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications”, TJNS, vol. 13, no. 2, pp. 61–68, 2024, doi: 10.46810/tdfd.1412214.
ISNAD Teber, Ahmet. “Refractive Index Sensor Based on Terahertz Metamaterial Absorber With High Sensitivity and Quality Factor for Sensing Applications”. Türk Doğa ve Fen Dergisi 13/2 (June 2024), 61-68. https://doi.org/10.46810/tdfd.1412214.
JAMA Teber A. Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications. TJNS. 2024;13:61–68.
MLA Teber, Ahmet. “Refractive Index Sensor Based on Terahertz Metamaterial Absorber With High Sensitivity and Quality Factor for Sensing Applications”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 2, 2024, pp. 61-68, doi:10.46810/tdfd.1412214.
Vancouver Teber A. Refractive Index Sensor Based on Terahertz Metamaterial Absorber with High Sensitivity and Quality Factor for Sensing Applications. TJNS. 2024;13(2):61-8.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.