Research Article
BibTex RIS Cite

Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets

Year 2024, Volume: 13 Issue: 3, 50 - 56, 26.09.2024
https://doi.org/10.46810/tdfd.1481217

Abstract

Friction stir lap welding of AZ31B magnesium alloy sheets was conducted under various welding tool tilt angles (0°, 1°, 2°, 3° and 4°) keeping other variables constant. Tensile shear load carrying capacity and microhardness of the welds were obtained. Furthermore, the fracture mechanism of the weld was examined. The tilt angle significantly affected the weld cross-section zone and thus its load carrying capacity. At 0° tilt angle tunnel defect was seen. It was seen that the strongest joint created at 1° tilt angle was slightly more than three times stronger than the weakest one made at 4°. The joint strength considerably decreased with increasing tilt angle after 1° because the effective top sheet thickness on the advancing side was highly reduced because of more tool shoulder penetration. Hardness in heat-affected and weld zones decreased when the tilt angle was improved probably due to the more heat input. The fact that no breakage occurred from the weld areas during the tensile test is evidence of strong joining.

References

  • Cao X, Jahazi M, Immarigeon JP, Wallace W. A review of laser welding techniques for magnesium alloys. J Mater Process. Technol. 2006;171:188-204.
  • Liu FJ, Li YP, Sun ZY, Ji Y. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing. J Mater Res Technol. 2021;11:1019-30.
  • Eivani AR, Mehdizade M, Chabok S, Zhou J. Applying multipass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J Mater Res Technol. 2021;12:1946-57.
  • Wang W, Han P, Peng P, Guo H, Huang L, Qiao K, et al. Superplastic deformation behavior of fine-grained AZ80 magnesium alloy prepared by friction stir processing. J Mater Res Technol. 2020;9(3):5252-63.
  • Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials. Pro Aerosp Sci. 2018;97:22-34.
  • Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I. Pultruded materials and structures: a review. J Compos Mater. 2020;54:4081-4117.
  • Imran M, Khan R.A. Characterization of Al-7075 metal matrix composites: a review. J Mate Res. Technol. 2019;8:3347-3356.
  • Qin B, Yin F-c, Zeng C-z, Xie J-c, Shen J. Microstructure and mechanical properties of TIG/A-TIG welded AZ61/ZK60 magnesium alloy joints. Trans Nonferrous Met Soc. China. 2019;29(9):1864-1872.
  • Gao M, Wang H, Hao K, Mu H, Zeng X. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation. J Manu Process. 2019;45:92-99.
  • Hao K, Wang H, Gao M, Wu R, Zeng X. Laser welding of AZ31B magnesium alloy with beam oscillation. J Mater Res Technol. 2019;8(3):3044-3053.
  • Song G, Diao Z, Lv X, Liu L. TIG and laser–TIG hybrid filler wire welding of casting and wrought dissimilar magnesium alloy. J Manuf Process. 2018;34:204-214.
  • Thomas WM, Nicholas ED, NeedHam JC, Murch MG, Templesmith P, Dawes CJ. Friction Stir Welding. In Pat. App. 1991;8 PCT/GB92102203 and Great Britain patent application no. 9125978.
  • Golbabaei P, Besharati Givi MK, Molaiekiya. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458-464.
  • Barmouz M,Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Comp Part A: App Sci Manuf. 2011;50(10):1445-1453.
  • Zohoor M, Besharati Givi MK, Salami P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater Des. 2012;39:5004-5014.
  • Liu HJ, Fujii H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Technol. 2003;142(3):692-696.
  • Zhou M, Morisada Y, Fujii H, Ishikawa T. Mechanical properties optimization of AZX612-Mg alloy joint by double-sided friction stir welding. J Mater Process Technol. 2018;254:91-99.
  • Fujii H, Sun Y, Kato H, Nakata K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Mater Sci Eng A. 2010;527(15):3386-3391.
  • Tsujikawa M, Abe Y, C. SW, Oki S, Higashi K, Hiraki I, M. Kamita. Cold-rolled Mg-14 mass% Li-1 mass% Al alloy and its friction stir welding. Mater Trans. 2006;47(4):1077-1081.
  • Salari E, Jahazi M, Khodabandeh A, Ghasemi-Nanesa H. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des. 2014;58:381-389.
  • Galvão I, Verdera D, Gesto D, Loureiro A, Rodrigues DM. Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J Mater Process Technol. 2013;213(11):1920-1928.
  • Thornton PH, Krause AR, Davies RG. Aluminum Spot Weld. Weld J. 1996;75:101.
  • Mishra RS, M ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1-78.
  • Cam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform. 2014;23:1936-53.
  • Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magnes All. 2018;6:399-416.
  • Cao X, Jahazi M. Effect of tool rotational speed and probe length on lap joint quality of a frictionstir welded magnesium alloy. Mater Des. 2011;32(1):1-11.
  • Cao X, Jahazi M. Effect of welding speed on lap joint quality of friction stir welded AZ31 magnesium alloy. Trends in Welding Research, Proceedings of the 8th International Conference, 2008;72-80.
  • Yang Q, Li X, Chen1 K, Shi YJ. Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld. Mater Sci Eng A. 2011;528:2463-2478.
  • Rajendran C, Srinivasan K, Balasubramanian V, Balaji H, Selvaraj P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Tran Nonferrous Met. Soc China. 2019;29:1824-1835.

Takım Eğim Açısının AZ31B Magnezyum Alaşımlı Levhaların Sürtünme Karıştırma Bindirme Kaynaklarının Mekanik Özelliklerine Etkisi

Year 2024, Volume: 13 Issue: 3, 50 - 56, 26.09.2024
https://doi.org/10.46810/tdfd.1481217

Abstract

AZ31B magnezyum alaşımlı levhaların sürtünme karıştırma bindirme kaynağı, diğer değişkenler sabit tutularak çeşitli kaynak takım eğim açıları (0°, 1°, 2°, 3° ve 4°) altında gerçekleştirildi. Kaynakların çekme kesme yükü taşıma kapasitesi ve mikrosertliği elde edildi. Ayrıca kaynağın kırılma mekanizması da incelenmiştir. Eğim açısı kaynak kesit bölgesini ve dolayısıyla yük taşıma kapasitesini önemli ölçüde etkiledi. 0° eğim açısında tünel kusuru görüldü. 1° eğim açısında oluşturulan en güçlü bağlantının, 4° eğim açısında oluşturulan en zayıf bağlantıya göre üç kattından biraz daha fazla dayanıklı olduğu görüldü. Bağlantı mukavemeti, 1°'den sonra eğim açısının artmasıyla önemli ölçüde azaldı çünkü ilerleyen taraftaki etkin üst plaka kalınlığı, daha fazla takım omuzu nüfuzu nedeniyle oldukça azaldı. Eğim açısı artırıldığında, muhtemelen daha fazla ısı girdisi nedeniyle ısıdan etkilenen ve kaynak bölgelerindeki sertlik azalmıştır. Çekme testi sırasında kaynak bölgelerinde herhangi bir kırılmanın meydana gelmemesi birleştirmenin sağlam olduğunun kanıtıdır.

References

  • Cao X, Jahazi M, Immarigeon JP, Wallace W. A review of laser welding techniques for magnesium alloys. J Mater Process. Technol. 2006;171:188-204.
  • Liu FJ, Li YP, Sun ZY, Ji Y. Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing. J Mater Res Technol. 2021;11:1019-30.
  • Eivani AR, Mehdizade M, Chabok S, Zhou J. Applying multipass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J Mater Res Technol. 2021;12:1946-57.
  • Wang W, Han P, Peng P, Guo H, Huang L, Qiao K, et al. Superplastic deformation behavior of fine-grained AZ80 magnesium alloy prepared by friction stir processing. J Mater Res Technol. 2020;9(3):5252-63.
  • Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials. Pro Aerosp Sci. 2018;97:22-34.
  • Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I. Pultruded materials and structures: a review. J Compos Mater. 2020;54:4081-4117.
  • Imran M, Khan R.A. Characterization of Al-7075 metal matrix composites: a review. J Mate Res. Technol. 2019;8:3347-3356.
  • Qin B, Yin F-c, Zeng C-z, Xie J-c, Shen J. Microstructure and mechanical properties of TIG/A-TIG welded AZ61/ZK60 magnesium alloy joints. Trans Nonferrous Met Soc. China. 2019;29(9):1864-1872.
  • Gao M, Wang H, Hao K, Mu H, Zeng X. Evolutions in microstructure and mechanical properties of laser lap welded AZ31 magnesium alloy via beam oscillation. J Manu Process. 2019;45:92-99.
  • Hao K, Wang H, Gao M, Wu R, Zeng X. Laser welding of AZ31B magnesium alloy with beam oscillation. J Mater Res Technol. 2019;8(3):3044-3053.
  • Song G, Diao Z, Lv X, Liu L. TIG and laser–TIG hybrid filler wire welding of casting and wrought dissimilar magnesium alloy. J Manuf Process. 2018;34:204-214.
  • Thomas WM, Nicholas ED, NeedHam JC, Murch MG, Templesmith P, Dawes CJ. Friction Stir Welding. In Pat. App. 1991;8 PCT/GB92102203 and Great Britain patent application no. 9125978.
  • Golbabaei P, Besharati Givi MK, Molaiekiya. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37:458-464.
  • Barmouz M,Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Comp Part A: App Sci Manuf. 2011;50(10):1445-1453.
  • Zohoor M, Besharati Givi MK, Salami P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater Des. 2012;39:5004-5014.
  • Liu HJ, Fujii H, Maeda M, Nogi K. Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Technol. 2003;142(3):692-696.
  • Zhou M, Morisada Y, Fujii H, Ishikawa T. Mechanical properties optimization of AZX612-Mg alloy joint by double-sided friction stir welding. J Mater Process Technol. 2018;254:91-99.
  • Fujii H, Sun Y, Kato H, Nakata K. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints. Mater Sci Eng A. 2010;527(15):3386-3391.
  • Tsujikawa M, Abe Y, C. SW, Oki S, Higashi K, Hiraki I, M. Kamita. Cold-rolled Mg-14 mass% Li-1 mass% Al alloy and its friction stir welding. Mater Trans. 2006;47(4):1077-1081.
  • Salari E, Jahazi M, Khodabandeh A, Ghasemi-Nanesa H. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater Des. 2014;58:381-389.
  • Galvão I, Verdera D, Gesto D, Loureiro A, Rodrigues DM. Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J Mater Process Technol. 2013;213(11):1920-1928.
  • Thornton PH, Krause AR, Davies RG. Aluminum Spot Weld. Weld J. 1996;75:101.
  • Mishra RS, M ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1-78.
  • Cam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform. 2014;23:1936-53.
  • Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magnes All. 2018;6:399-416.
  • Cao X, Jahazi M. Effect of tool rotational speed and probe length on lap joint quality of a frictionstir welded magnesium alloy. Mater Des. 2011;32(1):1-11.
  • Cao X, Jahazi M. Effect of welding speed on lap joint quality of friction stir welded AZ31 magnesium alloy. Trends in Welding Research, Proceedings of the 8th International Conference, 2008;72-80.
  • Yang Q, Li X, Chen1 K, Shi YJ. Effect of tool geometry and process condition on static strength of a magnesium friction stir lap linear weld. Mater Sci Eng A. 2011;528:2463-2478.
  • Rajendran C, Srinivasan K, Balasubramanian V, Balaji H, Selvaraj P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Tran Nonferrous Met. Soc China. 2019;29:1824-1835.
There are 29 citations in total.

Details

Primary Language English
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer
Journal Section Articles
Authors

Ömer Ekinci 0000-0002-0179-6456

Anıl İmak 0000-0001-6091-1584

Publication Date September 26, 2024
Submission Date May 9, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Ekinci, Ö., & İmak, A. (2024). Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets. Türk Doğa Ve Fen Dergisi, 13(3), 50-56. https://doi.org/10.46810/tdfd.1481217
AMA Ekinci Ö, İmak A. Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets. TJNS. September 2024;13(3):50-56. doi:10.46810/tdfd.1481217
Chicago Ekinci, Ömer, and Anıl İmak. “Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir Lap Welds of AZ31B Magnesium Alloy Sheets”. Türk Doğa Ve Fen Dergisi 13, no. 3 (September 2024): 50-56. https://doi.org/10.46810/tdfd.1481217.
EndNote Ekinci Ö, İmak A (September 1, 2024) Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets. Türk Doğa ve Fen Dergisi 13 3 50–56.
IEEE Ö. Ekinci and A. İmak, “Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets”, TJNS, vol. 13, no. 3, pp. 50–56, 2024, doi: 10.46810/tdfd.1481217.
ISNAD Ekinci, Ömer - İmak, Anıl. “Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir Lap Welds of AZ31B Magnesium Alloy Sheets”. Türk Doğa ve Fen Dergisi 13/3 (September 2024), 50-56. https://doi.org/10.46810/tdfd.1481217.
JAMA Ekinci Ö, İmak A. Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets. TJNS. 2024;13:50–56.
MLA Ekinci, Ömer and Anıl İmak. “Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir Lap Welds of AZ31B Magnesium Alloy Sheets”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 3, 2024, pp. 50-56, doi:10.46810/tdfd.1481217.
Vancouver Ekinci Ö, İmak A. Effect of Tool Tilt Angle on The Mechanical Properties of Friction Stir lap Welds of AZ31B Magnesium Alloy Sheets. TJNS. 2024;13(3):50-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.