Research Article
BibTex RIS Cite

Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse

Year 2024, Issue: 1, 73 - 76, 01.10.2024
https://doi.org/10.46810/tdfd.1417143

Abstract

Photovoltaic systems that convert solar energy into electrical energy are one of the promising solutions for clean and renewable energy resources to meet the rapidly increasing energy need in the world. For this purpose, investigation of new photovoltaics with high conversion efficiency has gained importance for alternative strategies. Goal of this research is to present electrochemical synthesis and photoresponse of synergistic nanostructured electrochemically reduced graphene oxide/molybdenum trioxide photoelectrodes for proposing an alternative photovoltaic material. With this work, the obtained results indicate that electrochemically synthesized photoelectrodes are utilizable as new alternative materials for various energy production devices, such as solar cells. These interpretations can later be verified by subsequent solar cell applications.

References

  • Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews. 2007;11(7):1388-1413.
  • Shahbaz M, Topcu BA, Sarıgül SS, Vo XV. The effect of financial development on renewable energy demand: The case of developing countries. Renewable Energy. 2021;178:1370-1380.
  • Abbasi KR, Adedoyin FF, Abbas J, Hussain K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renewable Energy. 2021;180:1439-1450.
  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181-189.
  • Yi S, Raza Abbasi K, Hussain K, Albaker A, Alvarado R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Research. 2023;117:41-55.
  • Azni MA, Md Khalid R, Hasran UA, Kamarudin SK. Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability (Switzerland). 2023;15(5):4033.
  • Obaideen K, Olabi AG, Al Swailmeen Y, Shehata N, Abdelkareem MA, Alami AH, et al. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability. 2023;15(2):1-34.
  • Zhang H, Lu Y, Han W, Zhu J, Zhang Y, Huang W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal. 2020;393:124766.
  • Awan AB, Zubair M, Memon ZA, Ghalleb N, Tlili I. Comparative analysis of dish Stirling engine and photovoltaic technologies: Energy and economic perspective. Sustainable Energy Technologies and Assessments. 2021;44:101028.
  • Ali HM, Shokr EK, Taya YA, Elkot SA, Hasaneen MF, Mohamed WS. Amorphous molybdenum trioxide thin films for gas sensing applications. Sensors and Actuators A: Physical. 2022;335:113355.
  • Halwar DK, Deshmane VV, Patil AV. Orthorhombic molybdenum trioxide micro-planks as carbon monoxide gas sensor. Materials Research Express. 2019;6(10):105913.
  • Liao M, Wu L, Zhang Q, Dai J, Yao W. Controlled Morphology of Single-Crystal Molybdenum Trioxide Nanobelts for Photocatalysis. Journal of Nanoscience and Nanotechnology. 2019;20(3):1917-1921.
  • Taya YA, Ali HM, Shokr EK, Abd El-Raheem MM, Hasaneen MF, Elkot SA, et al. Mn-doped molybdenum trioxide for photocatalysis and solar cell applications. Optical Materials. 2021;121:111614.
  • Sharma KH, Hang DR, Bolloju S, Lee JT, Wu HF, Islam SE, et al. Two-dimensional molybdenum trioxide nanoflakes wrapped with interlayer-expanded molybdenum disulfide nanosheets: Superior performances in supercapacitive energy storage and visible-light-driven photocatalysis. International Journal of Hydrogen Energy. 2021;46(70):34663-34678.
  • Sheng D, Liu X, Zhang Q, Yi H, Wang X, Fu S, et al. Intercalation Reaction of Molybdenum Trioxide Cathode for Rechargeable Ion Batteries. Batteries and Supercaps. 2021;6(5):e202200569.
  • Yang C, Zhong X, Jiang Y, Yu Y. Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. Chinese Chemical Letters. 2017;28(12):2231-2234.
  • Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G. Graphene-based smart materials. Nature Reviews Materials. 2017;2:17046.
  • Temur E, Eryiğit M, Öztürk Doğan H, Çepni E, Demir Ü. Electrochemical fabrication and reductive doping of electrochemically reduced graphene oxide decorated with TiO2 electrode with highly enhanced photoresponse under visible light. Applied Surface Science. 2022;581:152150.
  • Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Applied Materials and Interfaces. 2012;4:8:3944–3950.
  • Ramesh S, Khandelwal S, Rhee KY, Hui D. Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Composites Part B: Engineering. 2018;138:45-54.
  • Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochimica Acta. 2013;114:674-680.

Gelişmiş fototepki için sinerjistik nanoyapılı elektrokimyasal indirgenmiş grafen oksit/molibden üçoksit fotoelektrotlar

Year 2024, Issue: 1, 73 - 76, 01.10.2024
https://doi.org/10.46810/tdfd.1417143

Abstract

Güneş enerjisini elektrik enerjisine dönüştüren fotovoltaik sistemler, dünyada hızla artan enerji ihtiyacının karşılanmasında temiz ve yenilenebilir enerji kaynakları için umut verici çözümlerden biridir. Bu amaç doğrultusunda yüksek dönüşüm verimliliğine sahip yeni fotovoltaiklerin araştırılması alternatif stratejiler açısından önem kazanmıştır. Bu araştırmanın amacı, alternatif bir fotovoltaik malzeme olarak sinerjistik nanoyapılı elektrokimyasal indirgenmiş grafen oksit/molibden trioksit fotoelektrotların elektrokimyasal sentezini ve fototepkisini sunmaktır. Bu çalışma kapsamında elde edilen bulgular, elektrokimyasal sentezlenen fotoelektrotların, güneş pilleri gibi çeşitli enerji üretim cihazlarında yeni alternatif malzemeler olarak kullanılabileceğini göstermektedir. Bu bulgular ileride yapılacak güneş pili uygulamalarında kullanılabilir.

References

  • Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews. 2007;11(7):1388-1413.
  • Shahbaz M, Topcu BA, Sarıgül SS, Vo XV. The effect of financial development on renewable energy demand: The case of developing countries. Renewable Energy. 2021;178:1370-1380.
  • Abbasi KR, Adedoyin FF, Abbas J, Hussain K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renewable Energy. 2021;180:1439-1450.
  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181-189.
  • Yi S, Raza Abbasi K, Hussain K, Albaker A, Alvarado R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Research. 2023;117:41-55.
  • Azni MA, Md Khalid R, Hasran UA, Kamarudin SK. Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia. Sustainability (Switzerland). 2023;15(5):4033.
  • Obaideen K, Olabi AG, Al Swailmeen Y, Shehata N, Abdelkareem MA, Alami AH, et al. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs). Sustainability. 2023;15(2):1-34.
  • Zhang H, Lu Y, Han W, Zhu J, Zhang Y, Huang W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal. 2020;393:124766.
  • Awan AB, Zubair M, Memon ZA, Ghalleb N, Tlili I. Comparative analysis of dish Stirling engine and photovoltaic technologies: Energy and economic perspective. Sustainable Energy Technologies and Assessments. 2021;44:101028.
  • Ali HM, Shokr EK, Taya YA, Elkot SA, Hasaneen MF, Mohamed WS. Amorphous molybdenum trioxide thin films for gas sensing applications. Sensors and Actuators A: Physical. 2022;335:113355.
  • Halwar DK, Deshmane VV, Patil AV. Orthorhombic molybdenum trioxide micro-planks as carbon monoxide gas sensor. Materials Research Express. 2019;6(10):105913.
  • Liao M, Wu L, Zhang Q, Dai J, Yao W. Controlled Morphology of Single-Crystal Molybdenum Trioxide Nanobelts for Photocatalysis. Journal of Nanoscience and Nanotechnology. 2019;20(3):1917-1921.
  • Taya YA, Ali HM, Shokr EK, Abd El-Raheem MM, Hasaneen MF, Elkot SA, et al. Mn-doped molybdenum trioxide for photocatalysis and solar cell applications. Optical Materials. 2021;121:111614.
  • Sharma KH, Hang DR, Bolloju S, Lee JT, Wu HF, Islam SE, et al. Two-dimensional molybdenum trioxide nanoflakes wrapped with interlayer-expanded molybdenum disulfide nanosheets: Superior performances in supercapacitive energy storage and visible-light-driven photocatalysis. International Journal of Hydrogen Energy. 2021;46(70):34663-34678.
  • Sheng D, Liu X, Zhang Q, Yi H, Wang X, Fu S, et al. Intercalation Reaction of Molybdenum Trioxide Cathode for Rechargeable Ion Batteries. Batteries and Supercaps. 2021;6(5):e202200569.
  • Yang C, Zhong X, Jiang Y, Yu Y. Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. Chinese Chemical Letters. 2017;28(12):2231-2234.
  • Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G. Graphene-based smart materials. Nature Reviews Materials. 2017;2:17046.
  • Temur E, Eryiğit M, Öztürk Doğan H, Çepni E, Demir Ü. Electrochemical fabrication and reductive doping of electrochemically reduced graphene oxide decorated with TiO2 electrode with highly enhanced photoresponse under visible light. Applied Surface Science. 2022;581:152150.
  • Pan X, Zhao Y, Liu S, Korzeniewski CL, Wang S, Fan Z. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Applied Materials and Interfaces. 2012;4:8:3944–3950.
  • Ramesh S, Khandelwal S, Rhee KY, Hui D. Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Composites Part B: Engineering. 2018;138:45-54.
  • Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochimica Acta. 2013;114:674-680.
There are 21 citations in total.

Details

Primary Language English
Subjects Photochemistry, Photovoltaic Devices (Solar Cells)
Journal Section Articles
Authors

Emir Çepni 0000-0001-8738-1157

Publication Date October 1, 2024
Submission Date January 9, 2024
Acceptance Date April 17, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Çepni, E. (2024). Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse. Türk Doğa Ve Fen Dergisi(1), 73-76. https://doi.org/10.46810/tdfd.1417143
AMA Çepni E. Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse. TJNS. October 2024;(1):73-76. doi:10.46810/tdfd.1417143
Chicago Çepni, Emir. “Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse”. Türk Doğa Ve Fen Dergisi, no. 1 (October 2024): 73-76. https://doi.org/10.46810/tdfd.1417143.
EndNote Çepni E (October 1, 2024) Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse. Türk Doğa ve Fen Dergisi 1 73–76.
IEEE E. Çepni, “Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse”, TJNS, no. 1, pp. 73–76, October 2024, doi: 10.46810/tdfd.1417143.
ISNAD Çepni, Emir. “Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse”. Türk Doğa ve Fen Dergisi 1 (October 2024), 73-76. https://doi.org/10.46810/tdfd.1417143.
JAMA Çepni E. Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse. TJNS. 2024;:73–76.
MLA Çepni, Emir. “Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse”. Türk Doğa Ve Fen Dergisi, no. 1, 2024, pp. 73-76, doi:10.46810/tdfd.1417143.
Vancouver Çepni E. Synergistic Nanostructured Electrochemically Reduced Graphene Oxide/Molybdenum Trioxide Photoelectrodes For Enhanced Photoresponse. TJNS. 2024(1):73-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.