Research Article
BibTex RIS Cite

Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi

Year 2015, Volume: 26 Issue: 3, 7115 - 7137, 01.07.2015
https://doi.org/10.18400/tekderg.298420

Abstract

Karayolunda güvenli bir sürüşün sağlanabilmesi için
taşıt tekerlek bandajı ile yol yüzeyi arasındaki sürtünme direncinin belli bir
seviyede olması gerekmektedir. Sürtünme direnci kaplama yüzey dokusu ile
yakından ilişkilidir. Günümüzde, gelişen teknolojinin imkanlarını da kullanarak
kaplama yüzey dokusunun belirlenmesine yönelik çalışmalara ihtiyaç
duyulmaktadır. Bu çalışmada, İzmir kentinde belirlenen 4 farklı tip esnek
kaplamada 3'er aylık periyotlarla 3B lazer tarayıcı kullanarak ASTM E 1845‒09
'e göre ortalama profil derinlikleri (MPD) ölçülmüş, sonuçlar Kum yama yöntemi
ile elde edilen ortalama doku derinliği (MTD) ve DFT ile ölçülen sürtünme
direnci ölçüm sonuçları ile karşılaştırılmıştır. Çalışma sonucunda MTD ile MPD
arasında yüksek korelasyon bulunduğu ve MPD değerindeki azalış oranı ile 60
km/sa hızdaki sürtünme değerinin (f(60)) azalış oranının aynı düzeyde olmadığı
tespit edilmiştir.

References

  • [1] Hosking, J. K., Relationship between skidding resistance and accident frequency: estimates based on seasonal variations, TRRL Report RR76, Department of Transport, Crowthorne, UK, 1987.
  • [2] Şengöz, B., Tanyel, S., Görkem, Ç., Kaçmaz, B., İzmir şehir içi yolların kayma dirençlerinin trafik güvenliği açısından değerlendirilmesi, DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, Cilt: 12 Sayı:1, 75‒85, 2010.
  • [3] Xiao, J., Kulakowski, B.T., El-Gindy, M., Prediction of risk of wet-pavement accidents: Fuzzy logic model, Transportation Research Record 1717, Transportation Research Board, Washington, D.C. 2000.
  • [4] Rizenberg, R.L., Burchett, J.L, Napier C.T., Skid resistance of pavements, Report No. KYHPR‒64‒24, Part II, Kentucky Department of Highways, Lexington, Kentucky, 1972.
  • [5] Ergun, M., Road surface micro and macro influence on skid resistance, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 1997.
  • [6] Permanent International Association of Road Congresses, Report of the Committee on Surface Characteristics, Proceedings of the 18th World Road Congress, World Road Congress, Brussels, Belgium, 1–43, 1987.
  • [7] PIARC-Permanent International Association of Road Congresses, International PIARC experiment to compare and harmonize texture and skid resistance measurements, Permanent International Association of Road Congresses, Brussels, Belgium, 1995.
  • [8] Characterization of pavement texture by use of surface profiles-Part 2: terminology and basic requirements related to pavement texture profile analysis, International Organization of Standardization., 2002.
  • [9] Dewey, G.R., Robords, A.C., Armour, B.T., Muethel, R., Aggregate wear and pavement friction, Transportation Research Board Annual Meeting, Washington DC, USA, July 1, 2001.
  • [10] Forster, S.W., Pavement microtexture and its relation to skid resistance, Transportation Research Record, 1215, 151–164. Transportation Research Board, TRB, National Research Council, 1989.
  • [11] Britton, S.C., Ledbetter, W.B., Gallaway, B.M., Estimation of skid numbers from surface texture parameters in the rational design of standard reference pavements for test equipment calibration, Journal of Testing and Evaluation, 2, 73–83, 1974. DOI 10.1520/STP39047S.
  • [12] Moore, D.F., The friction of pneumatic tires, Elsevier Scientific Publishing, Amsterdam, Netherland, 1975.
  • [13] Ergun, M., Iyinam, S., Iyinam, A. F., Prediction of road surface friction coefficient using only macro and microtexture measurements, Journal of Transportation Engineering, 131, 311–319, 2005. DOI 10.1061/(ASCE)0733-947X(2005)131:4(311).
  • [14] Bond, R., Katekhda, I.E.D., Lees, G., Williams, A.R., Tire/Road surface interaction, Journal of the Institution of Highway Engineers, 13, 72–79, 1976.
  • [15] Leu, M.C., Henry, J.J., Prediction of skid resistance as a function of speed from pavement texture, Transportation Research Record, 666, 7–13. Transportation Research Board, TRB, National Research Council, 1978.
  • [16] Şengöz, B., Topal, A., Tanyel, S., Comparison of pavement surface texture determination by sand patch test and 3D laser scanning, Periodica Polytechnica-Civil Engineering, 56/1, 73–78, 2012. DOI: 10.3311/pp.ci.2012-1.08.
  • [17] Standard test method for measuring pavement macro-texture depth using a volumetric technique, ASTM E 965-96, American Society for Testing Materials, Pennsylvania, USA, 2006.
  • [18] Standard test method for measuring pavement texture drainage, using an outflow meter, ASTM E 2380, American Society for Testing Materials, Pennsylvania, USA, 2009.
  • [19] Standard test method for measuring pavement macro-texture properties using the circular track meter, ASTM E 2157-01, American Society for Testing Materials, Pennsylvania, USA, 2005.
  • [20] Jayawickrama, P.W., Prasanna, R., Senadheera, S.P., Survey of state practices to control skid resistance on hot-mix asphalt concrete pavements, Transportation Research Record, 1536, 71–80, DOI 10.3141/1536- Transportation Research Board, TRB, National Research Council, 1996.
  • [21] Walker, R.S., Payne, L.D., Use of selcom laser for pavement texture and skid resistance measurement, Research Project 1290, Transportation Instrumentation Laboratory, University of Texas, Texas, USA, 2003.
  • [22] Her, I., Henry, J.J., Wambold, J.C., Development of a data acquisition method for non-contact pavement macrotexture measurement, Transportation Research Record, 1000, 91–100. Transportation Research Board, TRB, National Research Council, 1984.
  • [23] Ergun, M., İyinam, Ş., İyinam, F., Kayma direnci için uluslararası indeks oluşturma çabaları, 3. Ulusal Asfalt Sempozyumu, Ankara, 368-377, 2004.
  • [24] Rado, Z., Yager, T.J., Wambold, J.C., Hall, J.W., Guide for pavement friction, NCHRP, Project No:1‒43, 2006.
  • [25] Rado, Z., Analysis of texture models. Pennsylvania Transportation Institute (PTI), Report No. 9510, Penn State University, State College, Pennsylvania, 1994.
  • [26] Karayolları Teknik Şartnamesi, T.C.Bayındırlık ve İskan Bakanlığı, Karayolları Genel Müdürlüğü, 2013.
  • [27] Demir, B., Ünal, N., Yeni yapılan asfalt kaplamalarda düzgünsüzlük Değerlendirilmesi, 6. Ulusal Asfalt Sempozyumu, 27-28 Kasım, Ankara, 2013.
  • [28] Standard practice for calculating pavement macrotexture mean profile depth, ASTM E 1845‒09, ASTM International, Volume 04.03, West Conshohocken, Pennsylvania West Conshohocken, PA, United States, 2009.
  • [29] Standard test method for measuring pavement macrotexture depth using a volumetric technique, ASTM E 965‒96, ASTM International, Volume 04.03, West Conshohocken, Pennsylvania West Conshohocken, PA, United States, 2006.
  • [30] Choubane, B., Pavement surface condition/Performance assessment: Reliability and relevancy of procedures and technologies, STP 1486, ASTM International, Lancaster, PA, 2007.
  • [31] Yager, T. J., Bühlmann F., Macrotexture and drainage measurements on a variety of concrete and asphalt surfaces, Pavement Surface Characteristics and Materials, ASTM STP 763. C. M. Hayden, Ed., American Society for Testing and Materials, Philadelphia, PA, 16‒30, 1982.
  • [32] ASTM E1911‒09, Standard test method for measuring paved surface frictional properties using the dynamic friction tester, ASTM International, Volume 04, West Conshohocken, PA, United States, 2005.
  • [33] Jayawickrama, P.W., Thomas, B., Correction of field skid measurements for seasonal variations in Texas, Transportation Research Record 1639, Transportation Research Board, National Research Council, Washington, D.C., 147‒154, 1998.
  • [34] ASTM E 1960‒07, Standard Practice for Calculating International Friction Index of a Pavement Surface, ASTM International, West Conshohocken, PA, United States, 2011.
  • [35] Rado, Z., Analysis of texture models, PTI Report No. 9510, Pennsylvania Transportation Institute, Penn State University, State College, Pennsylvania, 1994.
  • [36] Hall, J.W., Smith, K.L, Glover L.T., Wambold, J.C., Yager, T.J., RADO, Z., Guide for pavement friction, NCHRP, Project No:01‒43, 2009.
  • [37] Cheng, W., Barch, R., Dunn, P., A statistical roughness model for adhesion, Proceedings, World Congress on Adhesion Related Phenomenon II, Orlando, FL, 2002.
Year 2015, Volume: 26 Issue: 3, 7115 - 7137, 01.07.2015
https://doi.org/10.18400/tekderg.298420

Abstract

References

  • [1] Hosking, J. K., Relationship between skidding resistance and accident frequency: estimates based on seasonal variations, TRRL Report RR76, Department of Transport, Crowthorne, UK, 1987.
  • [2] Şengöz, B., Tanyel, S., Görkem, Ç., Kaçmaz, B., İzmir şehir içi yolların kayma dirençlerinin trafik güvenliği açısından değerlendirilmesi, DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, Cilt: 12 Sayı:1, 75‒85, 2010.
  • [3] Xiao, J., Kulakowski, B.T., El-Gindy, M., Prediction of risk of wet-pavement accidents: Fuzzy logic model, Transportation Research Record 1717, Transportation Research Board, Washington, D.C. 2000.
  • [4] Rizenberg, R.L., Burchett, J.L, Napier C.T., Skid resistance of pavements, Report No. KYHPR‒64‒24, Part II, Kentucky Department of Highways, Lexington, Kentucky, 1972.
  • [5] Ergun, M., Road surface micro and macro influence on skid resistance, Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 1997.
  • [6] Permanent International Association of Road Congresses, Report of the Committee on Surface Characteristics, Proceedings of the 18th World Road Congress, World Road Congress, Brussels, Belgium, 1–43, 1987.
  • [7] PIARC-Permanent International Association of Road Congresses, International PIARC experiment to compare and harmonize texture and skid resistance measurements, Permanent International Association of Road Congresses, Brussels, Belgium, 1995.
  • [8] Characterization of pavement texture by use of surface profiles-Part 2: terminology and basic requirements related to pavement texture profile analysis, International Organization of Standardization., 2002.
  • [9] Dewey, G.R., Robords, A.C., Armour, B.T., Muethel, R., Aggregate wear and pavement friction, Transportation Research Board Annual Meeting, Washington DC, USA, July 1, 2001.
  • [10] Forster, S.W., Pavement microtexture and its relation to skid resistance, Transportation Research Record, 1215, 151–164. Transportation Research Board, TRB, National Research Council, 1989.
  • [11] Britton, S.C., Ledbetter, W.B., Gallaway, B.M., Estimation of skid numbers from surface texture parameters in the rational design of standard reference pavements for test equipment calibration, Journal of Testing and Evaluation, 2, 73–83, 1974. DOI 10.1520/STP39047S.
  • [12] Moore, D.F., The friction of pneumatic tires, Elsevier Scientific Publishing, Amsterdam, Netherland, 1975.
  • [13] Ergun, M., Iyinam, S., Iyinam, A. F., Prediction of road surface friction coefficient using only macro and microtexture measurements, Journal of Transportation Engineering, 131, 311–319, 2005. DOI 10.1061/(ASCE)0733-947X(2005)131:4(311).
  • [14] Bond, R., Katekhda, I.E.D., Lees, G., Williams, A.R., Tire/Road surface interaction, Journal of the Institution of Highway Engineers, 13, 72–79, 1976.
  • [15] Leu, M.C., Henry, J.J., Prediction of skid resistance as a function of speed from pavement texture, Transportation Research Record, 666, 7–13. Transportation Research Board, TRB, National Research Council, 1978.
  • [16] Şengöz, B., Topal, A., Tanyel, S., Comparison of pavement surface texture determination by sand patch test and 3D laser scanning, Periodica Polytechnica-Civil Engineering, 56/1, 73–78, 2012. DOI: 10.3311/pp.ci.2012-1.08.
  • [17] Standard test method for measuring pavement macro-texture depth using a volumetric technique, ASTM E 965-96, American Society for Testing Materials, Pennsylvania, USA, 2006.
  • [18] Standard test method for measuring pavement texture drainage, using an outflow meter, ASTM E 2380, American Society for Testing Materials, Pennsylvania, USA, 2009.
  • [19] Standard test method for measuring pavement macro-texture properties using the circular track meter, ASTM E 2157-01, American Society for Testing Materials, Pennsylvania, USA, 2005.
  • [20] Jayawickrama, P.W., Prasanna, R., Senadheera, S.P., Survey of state practices to control skid resistance on hot-mix asphalt concrete pavements, Transportation Research Record, 1536, 71–80, DOI 10.3141/1536- Transportation Research Board, TRB, National Research Council, 1996.
  • [21] Walker, R.S., Payne, L.D., Use of selcom laser for pavement texture and skid resistance measurement, Research Project 1290, Transportation Instrumentation Laboratory, University of Texas, Texas, USA, 2003.
  • [22] Her, I., Henry, J.J., Wambold, J.C., Development of a data acquisition method for non-contact pavement macrotexture measurement, Transportation Research Record, 1000, 91–100. Transportation Research Board, TRB, National Research Council, 1984.
  • [23] Ergun, M., İyinam, Ş., İyinam, F., Kayma direnci için uluslararası indeks oluşturma çabaları, 3. Ulusal Asfalt Sempozyumu, Ankara, 368-377, 2004.
  • [24] Rado, Z., Yager, T.J., Wambold, J.C., Hall, J.W., Guide for pavement friction, NCHRP, Project No:1‒43, 2006.
  • [25] Rado, Z., Analysis of texture models. Pennsylvania Transportation Institute (PTI), Report No. 9510, Penn State University, State College, Pennsylvania, 1994.
  • [26] Karayolları Teknik Şartnamesi, T.C.Bayındırlık ve İskan Bakanlığı, Karayolları Genel Müdürlüğü, 2013.
  • [27] Demir, B., Ünal, N., Yeni yapılan asfalt kaplamalarda düzgünsüzlük Değerlendirilmesi, 6. Ulusal Asfalt Sempozyumu, 27-28 Kasım, Ankara, 2013.
  • [28] Standard practice for calculating pavement macrotexture mean profile depth, ASTM E 1845‒09, ASTM International, Volume 04.03, West Conshohocken, Pennsylvania West Conshohocken, PA, United States, 2009.
  • [29] Standard test method for measuring pavement macrotexture depth using a volumetric technique, ASTM E 965‒96, ASTM International, Volume 04.03, West Conshohocken, Pennsylvania West Conshohocken, PA, United States, 2006.
  • [30] Choubane, B., Pavement surface condition/Performance assessment: Reliability and relevancy of procedures and technologies, STP 1486, ASTM International, Lancaster, PA, 2007.
  • [31] Yager, T. J., Bühlmann F., Macrotexture and drainage measurements on a variety of concrete and asphalt surfaces, Pavement Surface Characteristics and Materials, ASTM STP 763. C. M. Hayden, Ed., American Society for Testing and Materials, Philadelphia, PA, 16‒30, 1982.
  • [32] ASTM E1911‒09, Standard test method for measuring paved surface frictional properties using the dynamic friction tester, ASTM International, Volume 04, West Conshohocken, PA, United States, 2005.
  • [33] Jayawickrama, P.W., Thomas, B., Correction of field skid measurements for seasonal variations in Texas, Transportation Research Record 1639, Transportation Research Board, National Research Council, Washington, D.C., 147‒154, 1998.
  • [34] ASTM E 1960‒07, Standard Practice for Calculating International Friction Index of a Pavement Surface, ASTM International, West Conshohocken, PA, United States, 2011.
  • [35] Rado, Z., Analysis of texture models, PTI Report No. 9510, Pennsylvania Transportation Institute, Penn State University, State College, Pennsylvania, 1994.
  • [36] Hall, J.W., Smith, K.L, Glover L.T., Wambold, J.C., Yager, T.J., RADO, Z., Guide for pavement friction, NCHRP, Project No:01‒43, 2009.
  • [37] Cheng, W., Barch, R., Dunn, P., A statistical roughness model for adhesion, Proceedings, World Congress on Adhesion Related Phenomenon II, Orlando, FL, 2002.
There are 37 citations in total.

Details

Journal Section Articles
Authors

Bülent Kaçmaz This is me

Ali Topal

Burak Şengöz

Serhan Tanyel

Publication Date July 1, 2015
Submission Date March 16, 2017
Published in Issue Year 2015 Volume: 26 Issue: 3

Cite

APA Kaçmaz, B., Topal, A., Şengöz, B., Tanyel, S. (2015). Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi. Teknik Dergi, 26(3), 7115-7137. https://doi.org/10.18400/tekderg.298420
AMA Kaçmaz B, Topal A, Şengöz B, Tanyel S. Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi. Teknik Dergi. July 2015;26(3):7115-7137. doi:10.18400/tekderg.298420
Chicago Kaçmaz, Bülent, Ali Topal, Burak Şengöz, and Serhan Tanyel. “Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi”. Teknik Dergi 26, no. 3 (July 2015): 7115-37. https://doi.org/10.18400/tekderg.298420.
EndNote Kaçmaz B, Topal A, Şengöz B, Tanyel S (July 1, 2015) Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi. Teknik Dergi 26 3 7115–7137.
IEEE B. Kaçmaz, A. Topal, B. Şengöz, and S. Tanyel, “Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi”, Teknik Dergi, vol. 26, no. 3, pp. 7115–7137, 2015, doi: 10.18400/tekderg.298420.
ISNAD Kaçmaz, Bülent et al. “Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi”. Teknik Dergi 26/3 (July 2015), 7115-7137. https://doi.org/10.18400/tekderg.298420.
JAMA Kaçmaz B, Topal A, Şengöz B, Tanyel S. Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi. Teknik Dergi. 2015;26:7115–7137.
MLA Kaçmaz, Bülent et al. “Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi”. Teknik Dergi, vol. 26, no. 3, 2015, pp. 7115-37, doi:10.18400/tekderg.298420.
Vancouver Kaçmaz B, Topal A, Şengöz B, Tanyel S. Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi. Teknik Dergi. 2015;26(3):7115-37.