Research Article
BibTex RIS Cite

Investigation of Buried HDPE Pipe Deflection Behavior

Year 2019, Volume: 30 Issue: 5, 9373 - 9398, 01.09.2019
https://doi.org/10.18400/tekderg.397254

Abstract

References

  • [1] Moser, A. P., Buried Pipe Design, McGraw – Hill, 2008.
  • [2] Rogers, C. D. F., Fleming, P. R. and Talby, R., Use of Visual Methods to Investigate Influence of Installation Procedure on Pipe-Soil Interaction Transportation Research Record, 1541, pp 76-85, 1996.
  • [3] Meyerhof, G. G. and Baike, L. D., Strength of Steel Culvert Sheets Bearing Against Compacted Sand Backfill, Highway Research Board Proceedings,Vol. 30, 1963.
  • [4] Terzi, N. U., Gömülü Borulara Etkiyen Düşey ve Yatay Yüklerin Boru Stabilitesine Olan Etkilerinin Karşılaştırılması, Doktora Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Ana Bilim Dalı, 2007.
  • [5] CPPA (Corrugated Polyethylene Pipe Association), Recommended Installation Practices For Corrugated Polyethylene Pipe and Fittings, CPPA Washington, DC. 25-26, 2006.
  • [6] NCHRP (National Coorperative Highway Research Program), Report 429: transportation research board national research council HDPE pipe : recommended material specifications and design requirements, National Academy Press, Washington, D.C.,1999.
  • [7] Watkins, R. K., Szpak, E., and Allman, W. B., Structural design of polyethylene pipes Subjected to External Loads, Proc., ASTM Committee Meeting, Boston, 1973.
  • [8] Spangler, M. G., The Structural Design of Flexible Pipe Culverts, Iowa Engineering Experiment Station, Bulletin 153, 1941.
  • [9] Watkins, R. K. and Spangler, M. G., Some Characteristics of the Modulus of Pasive Resistance of Soil: A Study of Similitude, Highway Research Board Proceedings, Vol. 37., pp. 576-583, 1958. [10] ASTM D 2412, Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading, 2011.
  • [11] Marston, A., Anderson, A.O., The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe, Iowa State College of Agriculture and Mechanic Arts, Iowa, 1913.
  • [12] Masada, T., Improved Design Approach for Buried Flexible Pipe, Proceedings to Pipeline 2009: Infrastructure’s Hidden Assets, pp. 920–928, 2009.
  • [13] Masada, T., Structural Performance of Profile-Wall Plastic Pipes under Relatively Shallow Soil Cover and Subjected to Large Surface Load, Ph.D. Thesis, Ohio Universitesi College of Engineering and Technology, 1996.
  • [14] Howard, A. K., Modulus of Soil Reaction Values for Buried Flexible Pipe, ASCE Journal of Geotechnical Engineering, Vol. 103, pp. 33-43, 1977.
  • [15] Howard, A. K., The Reclamation E′ Table, 25 Years Later, Plastic Pipes Symposium XIII, 2006.
  • [16] Hartley, J. D., Duncan, M., E′ and It’s Variation with Depth, ASCE Journal of Transportation Engineering, Vol. 113, No. 5, 1987.
  • [17] McGrath, T. J., Replacing E’ with the Constrained Modulus in Buried Pipe Design, ASCE Pipelines in the Constructed Environment, pp. 28-40, 1998a.
  • [18] Nielson, F. D., Modulus of Soil Reaction as Determined from Triaxial Shear Test, Highway Research Record No. 185, Washington, D.C: 80-90, 1987.
  • [19] Stankowski, S. and Nielson, F. D., An Analytical-Experimental Study of Underground Structural Cylinder Systems, Engineering Experiment Station, New Mexico State University, Las Cruces, N. Mex., 1969.
  • [20] Chambers, R. E., McGrath, T. J., Heger, F. J., Plastic Pipe for Subsurface Drainage of Transportation Facilities, NCHRP Report 225, Transportation Research Board, 1980.
  • [21] Leonhardt, G., Die Erdlasten bei Überschutteten Durchlassen, Die Bautechunik, Vol. 56. No. 11, 1979.
  • [22] Howard, A. K., Composite E’ (Modulus of Soil Reaction), Proceedings of Pipelines 2009: Infrastructure’s Hidden Assets, pp. 960-969, 2009.
  • [23] McGrath, T. J., Design Method for Flexible Pipe, A Report to the AASHTO Flexible Culvert Liaisom Committee, Simpson Gumpertz & Heger Inc., 1998b.
  • [24] Burns J, Q. ve Richard R. M., Attenuation of stresses for buried cylinders, In Proc., Symposium on Soil–Structure Interaction, Tucson (AZ): University of Arizona Engineering Research Laboratory, 1964.
  • [25] Masada, T., Modified Iowa Formula for Vertical Deflection of Buried Flexible Pipe, ASCE Journal of Transportation Engineering, Vol. 126, No. 5, pp. 440-447, 2000.
  • [26] Sargand, S., Masada, T., Gruver, D., Field Performance and Analysis of Large – Diameter High – Density Polyethylene Pipe under Deep Soil Fill”, ASCE Journal of Geotechnical Engineering, Vol. 131, No. 1, pp. 39-51, 2005.
  • [27] Sargand, S. M. ve Masada, T., Long Term Monitoring of Pipe Under Deep Cover, Report No: FHWA-OH-2007/15, 2007.
  • [28] Sargand, S., Masada, T., Hazen, G., Field Verification of Structural Performance of Thermoplastic Pipe under Deep Backfill Conditions, FHWA/OH – 2002/023 Final Report to Ohio Dept. of Transportation and Federal Highway Administration, 2002.
  • [29] Akınay, E., Gömülü Esnek Boru Davranışının İncelenmesi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsünde Hazırlanan Yüksek Lisans Tezi, İstanbul, 2010.
  • [30] PLAXIS, Finite Element Code for Soil and Rock Analysis, Version 2012 Manual. A.A. Balkema Publishers. A.A. Balkema, Rotterdam, Netherlands, 2012.
  • [31] Massicotte, D., Finite Element Calculations of Stresses and Deformations in Buried Flexible Pipes, MSc. Thesis, Ottawa University, Dept. of Civil Engineering, 2000.

Gömülü HDPE Borularda Esneme Davranışının İncelenmesi

Year 2019, Volume: 30 Issue: 5, 9373 - 9398, 01.09.2019
https://doi.org/10.18400/tekderg.397254

Abstract

Bu çalışmada esnek boruların
tasarımı ve performans limitlerini etkileyen faktörlerden boru çember
rijitliği, gerilme, dolgu yerleşim relatif kompaksiyonu ve dolgu malzeme
türünün boru-zemin etkileşimi üzerindeki etkileri incelenmiştir. Bu kapsamda
kalın dolgular altında gömülü bulunan esnek
boru davranışının incelenmesi amacı ile yapılan proje kapsamındaki arazi
deneyleri kullanılmıştır. Boru özellikleri, dolgu yerleşimi, dolgu malzeme türü
dikkate alınarak söz konusu borularda meydana gelen esnemeler,
Geliştirilmiş Iowa
yaklaşımları ve
sayısal
analizler ile incelenmiş ve elde edilen sonuçların arazi ölçümleri ile
karşılaştırılması yapılmıştır. Yarı amprik yaklaşımlar ve sayısal analizlerden
hesaplanan esnemelerin arazi ölçümleri ile yaklaşık olarak uyumlu olduğu
belirlenerek çember rijitliği düşük ve yüksek olan yüksek yoğunluklu polietilen
boruların tasarımı için bu amprik yaklaşımların ve iki boyutlu sayısal
analizlerin kullanılabileceği görülmüştür. 

References

  • [1] Moser, A. P., Buried Pipe Design, McGraw – Hill, 2008.
  • [2] Rogers, C. D. F., Fleming, P. R. and Talby, R., Use of Visual Methods to Investigate Influence of Installation Procedure on Pipe-Soil Interaction Transportation Research Record, 1541, pp 76-85, 1996.
  • [3] Meyerhof, G. G. and Baike, L. D., Strength of Steel Culvert Sheets Bearing Against Compacted Sand Backfill, Highway Research Board Proceedings,Vol. 30, 1963.
  • [4] Terzi, N. U., Gömülü Borulara Etkiyen Düşey ve Yatay Yüklerin Boru Stabilitesine Olan Etkilerinin Karşılaştırılması, Doktora Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Ana Bilim Dalı, 2007.
  • [5] CPPA (Corrugated Polyethylene Pipe Association), Recommended Installation Practices For Corrugated Polyethylene Pipe and Fittings, CPPA Washington, DC. 25-26, 2006.
  • [6] NCHRP (National Coorperative Highway Research Program), Report 429: transportation research board national research council HDPE pipe : recommended material specifications and design requirements, National Academy Press, Washington, D.C.,1999.
  • [7] Watkins, R. K., Szpak, E., and Allman, W. B., Structural design of polyethylene pipes Subjected to External Loads, Proc., ASTM Committee Meeting, Boston, 1973.
  • [8] Spangler, M. G., The Structural Design of Flexible Pipe Culverts, Iowa Engineering Experiment Station, Bulletin 153, 1941.
  • [9] Watkins, R. K. and Spangler, M. G., Some Characteristics of the Modulus of Pasive Resistance of Soil: A Study of Similitude, Highway Research Board Proceedings, Vol. 37., pp. 576-583, 1958. [10] ASTM D 2412, Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading, 2011.
  • [11] Marston, A., Anderson, A.O., The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe, Iowa State College of Agriculture and Mechanic Arts, Iowa, 1913.
  • [12] Masada, T., Improved Design Approach for Buried Flexible Pipe, Proceedings to Pipeline 2009: Infrastructure’s Hidden Assets, pp. 920–928, 2009.
  • [13] Masada, T., Structural Performance of Profile-Wall Plastic Pipes under Relatively Shallow Soil Cover and Subjected to Large Surface Load, Ph.D. Thesis, Ohio Universitesi College of Engineering and Technology, 1996.
  • [14] Howard, A. K., Modulus of Soil Reaction Values for Buried Flexible Pipe, ASCE Journal of Geotechnical Engineering, Vol. 103, pp. 33-43, 1977.
  • [15] Howard, A. K., The Reclamation E′ Table, 25 Years Later, Plastic Pipes Symposium XIII, 2006.
  • [16] Hartley, J. D., Duncan, M., E′ and It’s Variation with Depth, ASCE Journal of Transportation Engineering, Vol. 113, No. 5, 1987.
  • [17] McGrath, T. J., Replacing E’ with the Constrained Modulus in Buried Pipe Design, ASCE Pipelines in the Constructed Environment, pp. 28-40, 1998a.
  • [18] Nielson, F. D., Modulus of Soil Reaction as Determined from Triaxial Shear Test, Highway Research Record No. 185, Washington, D.C: 80-90, 1987.
  • [19] Stankowski, S. and Nielson, F. D., An Analytical-Experimental Study of Underground Structural Cylinder Systems, Engineering Experiment Station, New Mexico State University, Las Cruces, N. Mex., 1969.
  • [20] Chambers, R. E., McGrath, T. J., Heger, F. J., Plastic Pipe for Subsurface Drainage of Transportation Facilities, NCHRP Report 225, Transportation Research Board, 1980.
  • [21] Leonhardt, G., Die Erdlasten bei Überschutteten Durchlassen, Die Bautechunik, Vol. 56. No. 11, 1979.
  • [22] Howard, A. K., Composite E’ (Modulus of Soil Reaction), Proceedings of Pipelines 2009: Infrastructure’s Hidden Assets, pp. 960-969, 2009.
  • [23] McGrath, T. J., Design Method for Flexible Pipe, A Report to the AASHTO Flexible Culvert Liaisom Committee, Simpson Gumpertz & Heger Inc., 1998b.
  • [24] Burns J, Q. ve Richard R. M., Attenuation of stresses for buried cylinders, In Proc., Symposium on Soil–Structure Interaction, Tucson (AZ): University of Arizona Engineering Research Laboratory, 1964.
  • [25] Masada, T., Modified Iowa Formula for Vertical Deflection of Buried Flexible Pipe, ASCE Journal of Transportation Engineering, Vol. 126, No. 5, pp. 440-447, 2000.
  • [26] Sargand, S., Masada, T., Gruver, D., Field Performance and Analysis of Large – Diameter High – Density Polyethylene Pipe under Deep Soil Fill”, ASCE Journal of Geotechnical Engineering, Vol. 131, No. 1, pp. 39-51, 2005.
  • [27] Sargand, S. M. ve Masada, T., Long Term Monitoring of Pipe Under Deep Cover, Report No: FHWA-OH-2007/15, 2007.
  • [28] Sargand, S., Masada, T., Hazen, G., Field Verification of Structural Performance of Thermoplastic Pipe under Deep Backfill Conditions, FHWA/OH – 2002/023 Final Report to Ohio Dept. of Transportation and Federal Highway Administration, 2002.
  • [29] Akınay, E., Gömülü Esnek Boru Davranışının İncelenmesi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsünde Hazırlanan Yüksek Lisans Tezi, İstanbul, 2010.
  • [30] PLAXIS, Finite Element Code for Soil and Rock Analysis, Version 2012 Manual. A.A. Balkema Publishers. A.A. Balkema, Rotterdam, Netherlands, 2012.
  • [31] Massicotte, D., Finite Element Calculations of Stresses and Deformations in Buried Flexible Pipes, MSc. Thesis, Ottawa University, Dept. of Civil Engineering, 2000.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Havvanur Kılıç 0000-0001-9455-1687

Emre Akınay This is me 0000-0002-1550-6317

Publication Date September 1, 2019
Submission Date February 21, 2018
Published in Issue Year 2019 Volume: 30 Issue: 5

Cite

APA Kılıç, H., & Akınay, E. (2019). Gömülü HDPE Borularda Esneme Davranışının İncelenmesi. Teknik Dergi, 30(5), 9373-9398. https://doi.org/10.18400/tekderg.397254
AMA Kılıç H, Akınay E. Gömülü HDPE Borularda Esneme Davranışının İncelenmesi. Teknik Dergi. September 2019;30(5):9373-9398. doi:10.18400/tekderg.397254
Chicago Kılıç, Havvanur, and Emre Akınay. “Gömülü HDPE Borularda Esneme Davranışının İncelenmesi”. Teknik Dergi 30, no. 5 (September 2019): 9373-98. https://doi.org/10.18400/tekderg.397254.
EndNote Kılıç H, Akınay E (September 1, 2019) Gömülü HDPE Borularda Esneme Davranışının İncelenmesi. Teknik Dergi 30 5 9373–9398.
IEEE H. Kılıç and E. Akınay, “Gömülü HDPE Borularda Esneme Davranışının İncelenmesi”, Teknik Dergi, vol. 30, no. 5, pp. 9373–9398, 2019, doi: 10.18400/tekderg.397254.
ISNAD Kılıç, Havvanur - Akınay, Emre. “Gömülü HDPE Borularda Esneme Davranışının İncelenmesi”. Teknik Dergi 30/5 (September 2019), 9373-9398. https://doi.org/10.18400/tekderg.397254.
JAMA Kılıç H, Akınay E. Gömülü HDPE Borularda Esneme Davranışının İncelenmesi. Teknik Dergi. 2019;30:9373–9398.
MLA Kılıç, Havvanur and Emre Akınay. “Gömülü HDPE Borularda Esneme Davranışının İncelenmesi”. Teknik Dergi, vol. 30, no. 5, 2019, pp. 9373-98, doi:10.18400/tekderg.397254.
Vancouver Kılıç H, Akınay E. Gömülü HDPE Borularda Esneme Davranışının İncelenmesi. Teknik Dergi. 2019;30(5):9373-98.