Research Article
BibTex RIS Cite

Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin

Year 2019, Volume: 30 Issue: 2, 9029 - 9051, 01.03.2019
https://doi.org/10.18400/tekderg.416067

Abstract

Every year, thousands of people are losing their lives and significant financial
losses occur because of flood disasters. Floods effects are based on basin characteristics.
Flood can be occurred with the effects of snow melting and irregular rains
because of shallow rivers of the basin even in summer months in Akarcay Basin. In
this study, Adaptive Hydraulics (AdH) model and The Finite Element Surface
Water Modeling System (FESWMS) were used to generate hydraulic model. Consequently,
many settlement areas haven’t flood risk, but especially agricultural lands in
some regions near sides of stream can be made damages after flood was seen.

References

  • [1] CHL, Adaptive Hydraulics 2D Shallow Water (AdH- SW2D) User Manual (version 4.6), July 2017, Coastal and Hydraulics Laboratory (CHL), US Army Corps of Engineers (USACE), 2017.
  • [2] Topaloglu, F., Regional Flood Frequency Analysis of the Basins of the East Mediterranean Region. Turk. J. Agric. For., 29, 287-295, 2005.
  • [3] Burn, D.H., Evaluation of Regional Flood Frequency Analysis with A Region of Influence Approach. Water Resour. Res., 26(10), 2257-2265, 1990.
  • [4] Burn, D.H., An Appraisal of The “Region of Influence” Approach to Flood Frequency Analysis. Hydrolog. Sci. J., 35(2), 149-165, 1990.
  • [5] Burn, D.H., Catchment Similarity for Regional Flood Frequency Analysis Using Seasonality Measures. J. Hydrol., 202, 212-230, 1997.
  • [6] Rossi, F., Fiorentino, M., Versace, P., Two-Component Extreme Value Distribution for Flood Frequency Analysis. Water Resour. Res., 20(7), 847-856, 1984.
  • [7] Stedinger, J.R., Cohn, T.A., Flood Frequency Analysis with Historical and Paleoflood Information. Water Resour. Res., 22(5), 785-793, 1987.
  • [8] Zhang, L., Singh, V.P., Bivariate Flood Frequency Analysis Using the Copula Method. J. Hydrol. Eng., 11(2), 150-164, 2006.
  • [9] Grimaldi, S., Serinaldi, F., Asymmetric Copula in Multivariate Flood Frequency Analysis. Adv. Water Resour., 29, 1155-1167, 2006.
  • [10] Yue, S., Ouarda, T.B.M.J., Bobee, B., Legendre, P., Bruneau, P., The Gumbel Mixed Model for Flood Frequency Analysis. J. Hydrol., 226, 88-100, 1999.
  • [11] Acreman, M.C., Sinclair, C.D., Classification of Drainage Basins According to Their Physical Characteristics; An Application for Flood Frequency Analysis in Scotland. J. Hydrol., 84, 365-380, 1986.
  • [12] Bates, P.D., De Roo, A.P.J., A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol., 236, 54–77, 2000.
  • [13] Horritt, M.S., Bates, P.D., Evaluation of 1D and 2D Numerical Models for Predicting River Flood Inundation. J. Hydrol., 268, 87-99, 2002.
  • [14] Sanders, B.F., Evaluation of On-line DEMs for Flood Inundation Modeling. Adv. Water Resour., 30, 1831-1843, 2007.
  • [15] Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson, C.C., Kanae, S., Bates, P.D., A High-Accuracy Map of Global Terrain Elevations. Geophys. Res. Lett., 44, 5844-5853, 2017.
  • [16] Ciervo, F., Papa, M.N., Medina, V., Bateman, A., Simulation of Flash Floods in Ungauged Basins Using Post-Event Surveys and Numerical Modelling. J. Flood Risk Manag., 8, 343-355, 2015.
  • [17] Bradford, S.F., Sanders, B.F., Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography. J. Hydraul. Eng., 128(3), 289-298, 2002.
  • [18] de Almeida, G.A.M., Bates, P., Ozdemir, H., Modelling Urban floods at Submetre Resolution: Challenges or Opportunities for flood Risk Management? J. Flood Risk Manag., https://doi.org/10.1111/jfr3.12276, 2016.
  • [19] Falter, D., Dung, N.V., Vorogushyn, S., Schroter, K., Hundecha, Y., Kreibich, H., Apel, H., Theisselmann, F., Merz, B., Continuous, Large-Scale Simulation Model for Flood Risk Assessments: Proof-Of-Concept. J. Flood Risk Manag., 9, 3-21, 2016.
  • [20] Papanicolaou, A.N., Elhakeem, M., Wardman, B., Calibration and Verification of A 2D Hydrodynamic Model for Simulating Flow Around Emergent Bendway Weir Structures. J. Hydraul. Eng., 137(1), 75-89, 2011.
  • [21] Rossell, R.P., Ting, F.C.K., Hydraulic and Contraction Scour Analysis of A Meandering Channel: James River Bridges Near Mitchell, South Dakota. J. Hydraul. Eng., 139(12), 1286-1296, 2013.
  • [22] Larsen, R.J., Ting, F.C.K., Jones, A.L., Flow Velocity and Pier Scour Prediction in a Compound Channel: Big Sioux River Bridge at Flandreau, South Dakota. J. Hydraul. Eng., 137(5), 595-605, 2011.
  • [23] Cook, A. Merwade, V., Effect of Topographic Data, Geometric Configuration and Modeling Approach on Flood Inundation Mapping. J. Hydrol., 377, 131-142, 2009.
  • [24] Pasternack, G.B., Bounrisavong, M.K., Parikh, K.K., Backwater Control on Riffle–Pool Hydraulics, Fish Habitat Quality, And Sediment Transport Regime in Gravel-Bed Rivers. J. Hydrol., 357, 125-139, 2008.
  • [25] Brown, R.A., Pasternack, G.B., Engineered Channel Controls Limiting Spawning Habitat Rehabilitation Success on Regulated Gravel-Bed Rivers. Geomorphology, 97, 631-654, 2008.
  • [26] Brown, R.A., Pasternack, G.B., Comparison of Methods for Analysing Salmon Habitat Rehabilitation Designs for Regulated Rivers. River Res. Appl., 25, 745-772, 2009.
  • [27] Cavagnaro, P., Revelli, R., Numerical Model Application for the Restoration of the Racconigi Royal Park (CN, Italy). J Cult. Herit., 10, 514-519, 2009.
  • [28] Jennings, A.A., Modeling Sedimentation and Scour in Small Urban Lakes. Environ. Modell. Softw., 18, 281-291, 2003.
  • [29] Mouton, A.M., Schneider, M., Peter, A., Holzer, G., Muller, R., Goethals, P.L.M., Pauw, N.D., Optimisation of A Fuzzy Physical Habitat Model for Spawning European Grayling (Thymallus Thymallus L.) in the Aare River (Thun, Switzerland). Ecol. Model., 215, 122-132, 2008.
  • [30] Zanichelli, G., Caroni, E., Fiorotto, V., River Bifurcation Analysis by Physical and Numerical Modeling. J. Hydraul. Eng., 130(3), 237-242, 2004.
  • [31] Stockstill, R.L., Daly, S.F., Hopkins, M.A., Modeling Floating Objects at River Structures. J. Hydraul. Eng., 135(5), 403-414., 2009.
  • [32] Sharp, J.A., McAnally, W.H., Numerical Modeling of Surge Overtopping of A Levee. Appl. Math. Model., 36, 1359-1370, 2012.
  • [33] Jones, L., Adaptive Control of Ground-Water Hydraulics. J. Water Res. Plan. Man., 118(1), 1-17, 1992.
  • [34] Danchuk, S., Willson, C.S., Effects of Shoreline Sensitivity on Oil Spill Trajectory Modeling of the Lower Mississippi River. Environ. Sci. Pollut. R., 17, 331-340, 2010.
  • [35] Lai, X., Jiang, J., Liang, Q., Huang, Q., Large-Scale Hydrodynamic Modeling of the Middle Yangtze River Basin with Complex River–Lake Interactions. J. Hydrol., 492, 228-243, 2013.
  • [36] Martin, S.K., Savant, G., McVan, D.C., Two-Dimensional Numerical Model of the Gulf Intracoastal Waterway near New Orleans. J. Waterw. Port Coast., 138(3), 236-245, 2012.
  • [37] McAlpin, T.O., Sharp, J.A., Scott, S.H., Savant, G., Habitat Restoration and Flood Control Protection in the Kissimmee River. Wetlands, 33, 551-560, 2013.
  • [38] Nguyen, H.V., Cheng, J.C., Hammack, E.A., Maier, R.S., Parallel Newton-Krylov Solvers for Modeling of A Navigation Lock Filling System. Procedia Computer Science, 1, 699-707, 2012.
  • [39] Nguyen, H.V., Cheng, J.C., Berger, C.R., Savant, G., A Mass Conservation Algorithm for Adaptive Unrefinement Meshes Used by Finite Element Methods. Procedia Computer Science, 9, 727-736, 2012.
  • [40] Eller, P.R., Cheng, J.C., Maier, R.S., Dynamic Linear Solver Selection for Transient Simulations Using Multi-Label Classifiers. Procedia Computer Science, 9, 1523-1532, 2012.
  • [41] Pettway, J.S., Schmidt, J.H., Stagg, A.K., Adaptive Meshing in A Mixed Regime Hydrologic Simulation Model. Computat. Geosci., 14, 665-674, 2010.
  • [42] Savant, G., Berger, C., McAlpin, T.O., Tate, J.N., Efficient Implicit Finite-Element Hydrodynamic Model for Dam and Levee Breach. J. Hydraul. Eng., 137(9), 1005-1018, 2011.
  • [43] Burgan, H.I., Flood Modelling of Akarcay Basin. MS Thesis, Afyon Kocatepe University, 2013.

Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin

Year 2019, Volume: 30 Issue: 2, 9029 - 9051, 01.03.2019
https://doi.org/10.18400/tekderg.416067

Abstract

Every year, thousands of people are losing their lives and significant financial losses occur because of flood disasters. Floods effects are based on basin characteristics. Flood can be occurred with the effects of snow melting and irregular rains because of shallow rivers of the basin even in summer months in Akarcay Basin. In this study, Adaptive Hydraulics (AdH) model and The Finite Element Surface Water Modeling System (FESWMS) were used to generate hydraulic model. Consequently, many settlement areas haven’t flood risk, but especially agricultural lands in some regions near sides of stream can be made damages after flood was seen.

References

  • [1] CHL, Adaptive Hydraulics 2D Shallow Water (AdH- SW2D) User Manual (version 4.6), July 2017, Coastal and Hydraulics Laboratory (CHL), US Army Corps of Engineers (USACE), 2017.
  • [2] Topaloglu, F., Regional Flood Frequency Analysis of the Basins of the East Mediterranean Region. Turk. J. Agric. For., 29, 287-295, 2005.
  • [3] Burn, D.H., Evaluation of Regional Flood Frequency Analysis with A Region of Influence Approach. Water Resour. Res., 26(10), 2257-2265, 1990.
  • [4] Burn, D.H., An Appraisal of The “Region of Influence” Approach to Flood Frequency Analysis. Hydrolog. Sci. J., 35(2), 149-165, 1990.
  • [5] Burn, D.H., Catchment Similarity for Regional Flood Frequency Analysis Using Seasonality Measures. J. Hydrol., 202, 212-230, 1997.
  • [6] Rossi, F., Fiorentino, M., Versace, P., Two-Component Extreme Value Distribution for Flood Frequency Analysis. Water Resour. Res., 20(7), 847-856, 1984.
  • [7] Stedinger, J.R., Cohn, T.A., Flood Frequency Analysis with Historical and Paleoflood Information. Water Resour. Res., 22(5), 785-793, 1987.
  • [8] Zhang, L., Singh, V.P., Bivariate Flood Frequency Analysis Using the Copula Method. J. Hydrol. Eng., 11(2), 150-164, 2006.
  • [9] Grimaldi, S., Serinaldi, F., Asymmetric Copula in Multivariate Flood Frequency Analysis. Adv. Water Resour., 29, 1155-1167, 2006.
  • [10] Yue, S., Ouarda, T.B.M.J., Bobee, B., Legendre, P., Bruneau, P., The Gumbel Mixed Model for Flood Frequency Analysis. J. Hydrol., 226, 88-100, 1999.
  • [11] Acreman, M.C., Sinclair, C.D., Classification of Drainage Basins According to Their Physical Characteristics; An Application for Flood Frequency Analysis in Scotland. J. Hydrol., 84, 365-380, 1986.
  • [12] Bates, P.D., De Roo, A.P.J., A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol., 236, 54–77, 2000.
  • [13] Horritt, M.S., Bates, P.D., Evaluation of 1D and 2D Numerical Models for Predicting River Flood Inundation. J. Hydrol., 268, 87-99, 2002.
  • [14] Sanders, B.F., Evaluation of On-line DEMs for Flood Inundation Modeling. Adv. Water Resour., 30, 1831-1843, 2007.
  • [15] Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J.C., Sampson, C.C., Kanae, S., Bates, P.D., A High-Accuracy Map of Global Terrain Elevations. Geophys. Res. Lett., 44, 5844-5853, 2017.
  • [16] Ciervo, F., Papa, M.N., Medina, V., Bateman, A., Simulation of Flash Floods in Ungauged Basins Using Post-Event Surveys and Numerical Modelling. J. Flood Risk Manag., 8, 343-355, 2015.
  • [17] Bradford, S.F., Sanders, B.F., Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography. J. Hydraul. Eng., 128(3), 289-298, 2002.
  • [18] de Almeida, G.A.M., Bates, P., Ozdemir, H., Modelling Urban floods at Submetre Resolution: Challenges or Opportunities for flood Risk Management? J. Flood Risk Manag., https://doi.org/10.1111/jfr3.12276, 2016.
  • [19] Falter, D., Dung, N.V., Vorogushyn, S., Schroter, K., Hundecha, Y., Kreibich, H., Apel, H., Theisselmann, F., Merz, B., Continuous, Large-Scale Simulation Model for Flood Risk Assessments: Proof-Of-Concept. J. Flood Risk Manag., 9, 3-21, 2016.
  • [20] Papanicolaou, A.N., Elhakeem, M., Wardman, B., Calibration and Verification of A 2D Hydrodynamic Model for Simulating Flow Around Emergent Bendway Weir Structures. J. Hydraul. Eng., 137(1), 75-89, 2011.
  • [21] Rossell, R.P., Ting, F.C.K., Hydraulic and Contraction Scour Analysis of A Meandering Channel: James River Bridges Near Mitchell, South Dakota. J. Hydraul. Eng., 139(12), 1286-1296, 2013.
  • [22] Larsen, R.J., Ting, F.C.K., Jones, A.L., Flow Velocity and Pier Scour Prediction in a Compound Channel: Big Sioux River Bridge at Flandreau, South Dakota. J. Hydraul. Eng., 137(5), 595-605, 2011.
  • [23] Cook, A. Merwade, V., Effect of Topographic Data, Geometric Configuration and Modeling Approach on Flood Inundation Mapping. J. Hydrol., 377, 131-142, 2009.
  • [24] Pasternack, G.B., Bounrisavong, M.K., Parikh, K.K., Backwater Control on Riffle–Pool Hydraulics, Fish Habitat Quality, And Sediment Transport Regime in Gravel-Bed Rivers. J. Hydrol., 357, 125-139, 2008.
  • [25] Brown, R.A., Pasternack, G.B., Engineered Channel Controls Limiting Spawning Habitat Rehabilitation Success on Regulated Gravel-Bed Rivers. Geomorphology, 97, 631-654, 2008.
  • [26] Brown, R.A., Pasternack, G.B., Comparison of Methods for Analysing Salmon Habitat Rehabilitation Designs for Regulated Rivers. River Res. Appl., 25, 745-772, 2009.
  • [27] Cavagnaro, P., Revelli, R., Numerical Model Application for the Restoration of the Racconigi Royal Park (CN, Italy). J Cult. Herit., 10, 514-519, 2009.
  • [28] Jennings, A.A., Modeling Sedimentation and Scour in Small Urban Lakes. Environ. Modell. Softw., 18, 281-291, 2003.
  • [29] Mouton, A.M., Schneider, M., Peter, A., Holzer, G., Muller, R., Goethals, P.L.M., Pauw, N.D., Optimisation of A Fuzzy Physical Habitat Model for Spawning European Grayling (Thymallus Thymallus L.) in the Aare River (Thun, Switzerland). Ecol. Model., 215, 122-132, 2008.
  • [30] Zanichelli, G., Caroni, E., Fiorotto, V., River Bifurcation Analysis by Physical and Numerical Modeling. J. Hydraul. Eng., 130(3), 237-242, 2004.
  • [31] Stockstill, R.L., Daly, S.F., Hopkins, M.A., Modeling Floating Objects at River Structures. J. Hydraul. Eng., 135(5), 403-414., 2009.
  • [32] Sharp, J.A., McAnally, W.H., Numerical Modeling of Surge Overtopping of A Levee. Appl. Math. Model., 36, 1359-1370, 2012.
  • [33] Jones, L., Adaptive Control of Ground-Water Hydraulics. J. Water Res. Plan. Man., 118(1), 1-17, 1992.
  • [34] Danchuk, S., Willson, C.S., Effects of Shoreline Sensitivity on Oil Spill Trajectory Modeling of the Lower Mississippi River. Environ. Sci. Pollut. R., 17, 331-340, 2010.
  • [35] Lai, X., Jiang, J., Liang, Q., Huang, Q., Large-Scale Hydrodynamic Modeling of the Middle Yangtze River Basin with Complex River–Lake Interactions. J. Hydrol., 492, 228-243, 2013.
  • [36] Martin, S.K., Savant, G., McVan, D.C., Two-Dimensional Numerical Model of the Gulf Intracoastal Waterway near New Orleans. J. Waterw. Port Coast., 138(3), 236-245, 2012.
  • [37] McAlpin, T.O., Sharp, J.A., Scott, S.H., Savant, G., Habitat Restoration and Flood Control Protection in the Kissimmee River. Wetlands, 33, 551-560, 2013.
  • [38] Nguyen, H.V., Cheng, J.C., Hammack, E.A., Maier, R.S., Parallel Newton-Krylov Solvers for Modeling of A Navigation Lock Filling System. Procedia Computer Science, 1, 699-707, 2012.
  • [39] Nguyen, H.V., Cheng, J.C., Berger, C.R., Savant, G., A Mass Conservation Algorithm for Adaptive Unrefinement Meshes Used by Finite Element Methods. Procedia Computer Science, 9, 727-736, 2012.
  • [40] Eller, P.R., Cheng, J.C., Maier, R.S., Dynamic Linear Solver Selection for Transient Simulations Using Multi-Label Classifiers. Procedia Computer Science, 9, 1523-1532, 2012.
  • [41] Pettway, J.S., Schmidt, J.H., Stagg, A.K., Adaptive Meshing in A Mixed Regime Hydrologic Simulation Model. Computat. Geosci., 14, 665-674, 2010.
  • [42] Savant, G., Berger, C., McAlpin, T.O., Tate, J.N., Efficient Implicit Finite-Element Hydrodynamic Model for Dam and Levee Breach. J. Hydraul. Eng., 137(9), 1005-1018, 2011.
  • [43] Burgan, H.I., Flood Modelling of Akarcay Basin. MS Thesis, Afyon Kocatepe University, 2013.
There are 43 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Halil İbrahim Burgan 0000-0001-6018-3521

Yilmaz Icaga 0000-0001-9347-4683

Publication Date March 1, 2019
Submission Date April 17, 2018
Published in Issue Year 2019 Volume: 30 Issue: 2

Cite

APA Burgan, H. İ., & Icaga, Y. (2019). Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin. Teknik Dergi, 30(2), 9029-9051. https://doi.org/10.18400/tekderg.416067
AMA Burgan Hİ, Icaga Y. Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin. Teknik Dergi. March 2019;30(2):9029-9051. doi:10.18400/tekderg.416067
Chicago Burgan, Halil İbrahim, and Yilmaz Icaga. “Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin”. Teknik Dergi 30, no. 2 (March 2019): 9029-51. https://doi.org/10.18400/tekderg.416067.
EndNote Burgan Hİ, Icaga Y (March 1, 2019) Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin. Teknik Dergi 30 2 9029–9051.
IEEE H. İ. Burgan and Y. Icaga, “Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin”, Teknik Dergi, vol. 30, no. 2, pp. 9029–9051, 2019, doi: 10.18400/tekderg.416067.
ISNAD Burgan, Halil İbrahim - Icaga, Yilmaz. “Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin”. Teknik Dergi 30/2 (March 2019), 9029-9051. https://doi.org/10.18400/tekderg.416067.
JAMA Burgan Hİ, Icaga Y. Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin. Teknik Dergi. 2019;30:9029–9051.
MLA Burgan, Halil İbrahim and Yilmaz Icaga. “Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin”. Teknik Dergi, vol. 30, no. 2, 2019, pp. 9029-51, doi:10.18400/tekderg.416067.
Vancouver Burgan Hİ, Icaga Y. Flood Analysis Using Adaptive Hydraulics (ADH) Model in Akarcay Basin. Teknik Dergi. 2019;30(2):9029-51.

Cited By