Depolanmış Tarama Çamurlarının Sıkışabilirlik ve Mukavemet Davranışının Laboratuvar ve Arazi Deneyleri ile İncelenmesi
Year 2021,
Volume: 32 Issue: 1, 10515 - 10539, 01.01.2021
Perihan Biçer
,
Havvanur Kılıç
,
Pelin Özener
Abstract
Bu çalışmada, Haliç tarama çamurunun karada depolanması durumunda, kendi ağırlığı altında ve sürşarj yükleri etkisindeki sıkışabilirlik ve mukavemet davranışı incelenmiştir. Bu amaçla, taranan çamurun karada depolanması durumunda kendi ağırlığı altında konsolidasyon davranışını incelemek için laboratuvarda dört adet büyük boyutlu model deney ve bir adet küçük boyutlu sedimantasyon deneyi gerçekleştirilmiştir. Bu deneylerde kendi ağırlığı altında konsolidasyondan sonra alınan örselenmemiş numuneler üzerinde yapılan ödometre deneyleri ile sürşarj yükleri etkisindeki sıkışabilirlik ve model deneylerde yapılan veyn deneyi ile derinlik boyunca drenajsız kayma mukavemeti ölçülmüştür. Zeminin kendi ağırlığı altındaki konsolidasyon davranışını incelemek için gerçekleştirilen model deneyler ve sedimentasyon deneyinden ölçülen oturma değerlerinden konsolidasyon katsayısı cv’nin 0.91-10.72 m2/yıl aralığında ve drenajsız kayma mukavemetinin de 4-20 kPa arasında değiştiği belirlenmiştir. Tarama çamurunun karada depolanmasından 13 yıl sonra yapılan arazi deneylerinden belirlenen drenajsız kayma mukavemeti (SPT N darbe sayısına bağlı olarak ve UU deneylerinden) benzer şekilde cu=4-20 kPa arasında değişim göstermiştir. Haliç’ten taranan ve eski taş ocağında depolanan yaklaşık 25 m kalınlıktaki tarama çamurunun düşük taşıma gücüne ve yüksek sıkışabilirliğe sahip olduğu tespit edilmiştir.
References
- [1] Pane, V., Schiffman, R.L., A note on sedimentation and consolidation. Geotechnique, 35, 1, 69-77, 1985.
- [2] Abu-Hejleh, A.N., Znidarci, D., Barnes, B.L., Consolidation characteristics of phosphatic clays. American Society of Civil Engineers Journal of Geotechnical Engineering, 122, 295-301, 1996.
- [3] Ortenblad, A., Mathematical theory of the process of consolidation of mud deposits. Journal of Mathematical Physics, 9, 73–149, 1930.
- [4] Gibson, R. E., The progress of consolidation in clay layer increasing in thickness with time, Geotechnique, 8, 171–182, 1958.
- [5] Imai, G., Setting behavior of clay suspension. Soils and Foundations. 20, 61 – 77, 1980.
- [6] Imai, G., Experimental studies on sedimentation mechanism and sediment formation of clay minerals. Soils and Foundations, 21, 7–20, 1981.
- [7] Gibson, R. E., Schiffman, R. L., Cargill, K. W., The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical Journal, 18, 280–293, 1981.
- [8] Been, K., Sills, G.C., Self-weight consolidation of soft soils: An experimental and theoretical study. Geotechnique 31, 519 – 535, 1981.
- [9] Koppula, S.D., Morgenstern, N.R., On the consolidation of sedimenting clays. Canadian Geotechnical Journal, 19(3), 1982.
- [10] Booker, J. R., Rowe, R. K., 1-D consolidation of periodically layered soil, Journal of Engineering Mechanics, 109, 1319–1333, 1983.
- [11] Bitzer, K., Modeling consolidation and fluid flow in sedimentary basins, Computers and Geosciences, 22, 467–478, 1996.
- [12] Fox, P. J., Berles, J. D., CS2: a piecewise-linear model for large strain consolidation, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 453– 475, 1997.
- [13] Battaglio, M., Bellomo, N., Bonzani, I., Lancellotta, R., Nonlinear consolidation models of clay with change type. International Journal of Non-Linear Mechanics, 38, 493–500, 2003.
- [14] Xie, X., Zhang, J., Zeng, G., Similarity solution of self-weight consolidation problem for saturated soil. Applied Mathematics and Mechanics, 26, 1165–1171, 2005.
- [15] Hawlader, B. C., Muhunthan, B., Imai, G., State-dependent constitutive model and numerical solution of self-weight consolidation, Geotechnique, 58, 133–141, 2008.
- [16] Kondo F, Torrance JK., Effects of Grain-Size distribution, Iron Oxide, and Organic matter in sedimentation and self-weight consolidation on thoroughly disturbed soft marine clay. Transactions of the Japan Society of Irigation Drainage and Reclamation Engineering, 260, 57-67, 2009.
- [17] Xu, G.Z., Gao, Y.F., Hong, Z.S., Ding, J.W., Settlement behavior of four dredged slurries in China. Marine Georesources and Geotechnology, 30, 143-156, 2012.
- [18] He, J., J. Chu, S. K. Tan, T. T. Vu., K. P. Lam, Sedimentation behavior of flocculant-treated soil slurry. Marine Georesources and Geotechnology, 35,593–602, 2016.
- [19] Zeng, L.-L., Z.-S. Hong, W.-B. Tian, and J.-W. Shi, Settling behavior of clay suspensions produced by dredging activities in China. Marine Georesources and Geotechnology, 36, 30–37, 2016.
- [20] Zhang, N., W. Zhu, H.-T. He, Y.-Y. Lv, and S.-W. Wang, Experimental study on settling velocity of soil particles in dredged slurry. Marine Georesources and Geotechnology, 35, 747–757, 2016.
- [21] Monte, J.L., Krizek, R.J., One-dimensional mathematical model for large-strain consolidation. Geotechnique, 26, 495-510, 1976.
- [22] Liu, J.C., Znidarcic, D., Modeling one-dimensional compression characteristic of soils. American Society of Civil Engineers Journal of Geotechnical Engineering, 117, 161-169, 1991.
- [23] Gibson, R.E., England, G.L., Hussey, M.J.L., The theory of one dimensional consolidation of saturated clays, I: Finite nonlinear consolidation of thin homogeneous layers. Geotechnique, 17, 261-273, 1967.
- [24] Gibson, R. E., Schiffman, R. L., Cargill, K. W., The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical Journal, 18, 280–293, 1981.
- [25] Toorman, E. A., Sedimentation and self-weight consolidation:General unifying theory. Geotechnique, 46 (1):103–13, 1996.
- [26] Özaydın, K., Yıldırım, S., Yıldırım, M., Kılıç, H., Akgüner, C., Nihai (Beşinci) Geoteknik Rapor, T.C. İstanbul Büyükşehir Belediye Başkanlığı Haliç Islah Projesi-Fizilipite Raporu için Taban Çamurunun Geoteknik ve Kirlilik Özelliklerinin Belirlenmesi ve Çamurun Taranması ve Uzaklaştırılması Projesi, Kasım 1995.
- [27] Berilgen, S.A., Biçer, P., Berilgen M., and Ozaydın, K., Assessment of consolidation behavior of golden horn marine dredged material. Marine Georesources and Geotechnology, 24, 1–16, 2006.
- [28] Berilgen, M. M., Ozaydin, K., Edil, T., A case study:dredging and disposal of Golden Horn. In T. B. Edil and P. J. Fox (eds.), Geotechnics of High Water Content Materials, ASTM STP 1374. West Conshohocken, Pennsylvania, USA: American Society for Testing and Materials. (1999).
- [29] Metropol Mühendislik, İstanbul ili, Eyüp ilçesi, Yeşilpınar mahallesi/ Alibeyköy Sınırlarında planlanan İstanbul Tema Parkı ve Eğlence Merkezi Zemin Etüd Raporu, Samsun, 2011.
- [30] ASTM D 2487. Standard Practice for Classification of Soils for Engineering Purposes Unified SoilClassification System). American Society for Testing and Materials Philadelphia.
- [31] ASTM D4318–10, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International.
- [32] ASTM-D 2974-14, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, ASTM International, West Conshohocken, PA.
- [33] İpekoğlu, P., Atık Çamur Sahalarının Rehabilitasyonu. Doktora Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Anabilim Dalı, 2004.
- [34] Fox, P. J., Berles, J. D., CS2: a piecewise-linear model for large strain consolidation, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 453– 475, 1997.
- [35] İnce, Ç. G., Sulu Çamurların Sedimentasyonu ve Konsolidasyonu. Yüksek Lisans Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Anabilim Dalı, 1998.
- [36] Asaoka, A., Observational Procedure of Settlement Prediction of Settlemen. Soils and Foundation., 18, 4, 87-101, 1978.
- [37] Casagrande, A., The Determination of the Pre-Consolidation Load and Its Practical Significance, Discussion D-34, Proc. of First INT: Conf. on Soil Mech. And Found. Eng., Cmbridge, III, 60-64, 1936.
- [38] Boyle, P., Berthier, D., Holding, G., Ameratunga, J., De Bok, C., Successful Application of vacuum consolidation at Port of Brisbane. Ground Improvement Technologies and case histories, GeoSS, Singapore, 747-753, 2009.
- [39] Bergado, D.T., Singh, N., Sim, S.H., Panichyatum, B., Sampaco, C.L., Balasubramaniam, A.S., Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles. Geotextiles and Geomenbranes, 9: 203-201, 1990.
- [40] Ganesalingam, D., Arulrajah, A., Ameratunga, J., Boyle, P. J., Sivakugan, N., Geotechnical properties of reconstituted dredged mud. Proceedings from the Pan-AM CGS Geotechnical Conference (pp. 1-7). Toronto, Canada. (2011).
- [41] Develioğlu İ., Pulat FH., Compressibility behaviour of natural and stabilized dredged soils in different organic matter content. Construction and Building Materials, 228, 1-11, 2019.
- [42] Stroud, M.A., The standard penetration test in insensitive clays and soft rock, Proceedings of European Symposium on Penetration Resistance. National Swedish Institute for Building Research, Stockholm, Sweden, 2.2, 367-375, 1974.
Investigation of Compresibility and Strength Behaviour of Deposited Dredged Slurries by Laboratory and Field Tests
Year 2021,
Volume: 32 Issue: 1, 10515 - 10539, 01.01.2021
Perihan Biçer
,
Havvanur Kılıç
,
Pelin Özener
Abstract
In this study, the consolidation and the strength behavior of Haliç dredged slurry stored at a disposal site were investigated through laboratory and field tests. For this purpose, four large scale model tests and a sedimentation test were carried out in the laboratory in order to simulate the consolidation process of the dredged material under self weight conditions. In these tests in order to investigate the compressibility behaviour, consolidation tests were carried out on the undisturbed samples recovered from the sedimentation tests. Additionally, vane test were performed in the large scale model tests to determine the undrained shear strength variation with depth. The coefficient of consolidation (cv) values obtained from the settlements measured in model tests and undrained shear strength values measured from vane tests were determined to be 0.91 – 10.72 m2/year and 4-20 kPa, respectively. The undrained shear strength values determined from the field tests carried out at the site 13 years after the storage of dredged slurry were determined to be 4-20 kPa based on SPT-N tests and UU tests. As a result of the field tests performed at the disposal site, it is determined that 25m thick dredged material deposited at the site has low bearing capacity and high compressibility characterisctics
References
- [1] Pane, V., Schiffman, R.L., A note on sedimentation and consolidation. Geotechnique, 35, 1, 69-77, 1985.
- [2] Abu-Hejleh, A.N., Znidarci, D., Barnes, B.L., Consolidation characteristics of phosphatic clays. American Society of Civil Engineers Journal of Geotechnical Engineering, 122, 295-301, 1996.
- [3] Ortenblad, A., Mathematical theory of the process of consolidation of mud deposits. Journal of Mathematical Physics, 9, 73–149, 1930.
- [4] Gibson, R. E., The progress of consolidation in clay layer increasing in thickness with time, Geotechnique, 8, 171–182, 1958.
- [5] Imai, G., Setting behavior of clay suspension. Soils and Foundations. 20, 61 – 77, 1980.
- [6] Imai, G., Experimental studies on sedimentation mechanism and sediment formation of clay minerals. Soils and Foundations, 21, 7–20, 1981.
- [7] Gibson, R. E., Schiffman, R. L., Cargill, K. W., The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical Journal, 18, 280–293, 1981.
- [8] Been, K., Sills, G.C., Self-weight consolidation of soft soils: An experimental and theoretical study. Geotechnique 31, 519 – 535, 1981.
- [9] Koppula, S.D., Morgenstern, N.R., On the consolidation of sedimenting clays. Canadian Geotechnical Journal, 19(3), 1982.
- [10] Booker, J. R., Rowe, R. K., 1-D consolidation of periodically layered soil, Journal of Engineering Mechanics, 109, 1319–1333, 1983.
- [11] Bitzer, K., Modeling consolidation and fluid flow in sedimentary basins, Computers and Geosciences, 22, 467–478, 1996.
- [12] Fox, P. J., Berles, J. D., CS2: a piecewise-linear model for large strain consolidation, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 453– 475, 1997.
- [13] Battaglio, M., Bellomo, N., Bonzani, I., Lancellotta, R., Nonlinear consolidation models of clay with change type. International Journal of Non-Linear Mechanics, 38, 493–500, 2003.
- [14] Xie, X., Zhang, J., Zeng, G., Similarity solution of self-weight consolidation problem for saturated soil. Applied Mathematics and Mechanics, 26, 1165–1171, 2005.
- [15] Hawlader, B. C., Muhunthan, B., Imai, G., State-dependent constitutive model and numerical solution of self-weight consolidation, Geotechnique, 58, 133–141, 2008.
- [16] Kondo F, Torrance JK., Effects of Grain-Size distribution, Iron Oxide, and Organic matter in sedimentation and self-weight consolidation on thoroughly disturbed soft marine clay. Transactions of the Japan Society of Irigation Drainage and Reclamation Engineering, 260, 57-67, 2009.
- [17] Xu, G.Z., Gao, Y.F., Hong, Z.S., Ding, J.W., Settlement behavior of four dredged slurries in China. Marine Georesources and Geotechnology, 30, 143-156, 2012.
- [18] He, J., J. Chu, S. K. Tan, T. T. Vu., K. P. Lam, Sedimentation behavior of flocculant-treated soil slurry. Marine Georesources and Geotechnology, 35,593–602, 2016.
- [19] Zeng, L.-L., Z.-S. Hong, W.-B. Tian, and J.-W. Shi, Settling behavior of clay suspensions produced by dredging activities in China. Marine Georesources and Geotechnology, 36, 30–37, 2016.
- [20] Zhang, N., W. Zhu, H.-T. He, Y.-Y. Lv, and S.-W. Wang, Experimental study on settling velocity of soil particles in dredged slurry. Marine Georesources and Geotechnology, 35, 747–757, 2016.
- [21] Monte, J.L., Krizek, R.J., One-dimensional mathematical model for large-strain consolidation. Geotechnique, 26, 495-510, 1976.
- [22] Liu, J.C., Znidarcic, D., Modeling one-dimensional compression characteristic of soils. American Society of Civil Engineers Journal of Geotechnical Engineering, 117, 161-169, 1991.
- [23] Gibson, R.E., England, G.L., Hussey, M.J.L., The theory of one dimensional consolidation of saturated clays, I: Finite nonlinear consolidation of thin homogeneous layers. Geotechnique, 17, 261-273, 1967.
- [24] Gibson, R. E., Schiffman, R. L., Cargill, K. W., The theory of one-dimensional consolidation of saturated clays. II. Finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical Journal, 18, 280–293, 1981.
- [25] Toorman, E. A., Sedimentation and self-weight consolidation:General unifying theory. Geotechnique, 46 (1):103–13, 1996.
- [26] Özaydın, K., Yıldırım, S., Yıldırım, M., Kılıç, H., Akgüner, C., Nihai (Beşinci) Geoteknik Rapor, T.C. İstanbul Büyükşehir Belediye Başkanlığı Haliç Islah Projesi-Fizilipite Raporu için Taban Çamurunun Geoteknik ve Kirlilik Özelliklerinin Belirlenmesi ve Çamurun Taranması ve Uzaklaştırılması Projesi, Kasım 1995.
- [27] Berilgen, S.A., Biçer, P., Berilgen M., and Ozaydın, K., Assessment of consolidation behavior of golden horn marine dredged material. Marine Georesources and Geotechnology, 24, 1–16, 2006.
- [28] Berilgen, M. M., Ozaydin, K., Edil, T., A case study:dredging and disposal of Golden Horn. In T. B. Edil and P. J. Fox (eds.), Geotechnics of High Water Content Materials, ASTM STP 1374. West Conshohocken, Pennsylvania, USA: American Society for Testing and Materials. (1999).
- [29] Metropol Mühendislik, İstanbul ili, Eyüp ilçesi, Yeşilpınar mahallesi/ Alibeyköy Sınırlarında planlanan İstanbul Tema Parkı ve Eğlence Merkezi Zemin Etüd Raporu, Samsun, 2011.
- [30] ASTM D 2487. Standard Practice for Classification of Soils for Engineering Purposes Unified SoilClassification System). American Society for Testing and Materials Philadelphia.
- [31] ASTM D4318–10, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International.
- [32] ASTM-D 2974-14, Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils, ASTM International, West Conshohocken, PA.
- [33] İpekoğlu, P., Atık Çamur Sahalarının Rehabilitasyonu. Doktora Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Anabilim Dalı, 2004.
- [34] Fox, P. J., Berles, J. D., CS2: a piecewise-linear model for large strain consolidation, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 453– 475, 1997.
- [35] İnce, Ç. G., Sulu Çamurların Sedimentasyonu ve Konsolidasyonu. Yüksek Lisans Tezi, YTÜ İnşaat Mühendisliği Bölümü, Geoteknik Anabilim Dalı, 1998.
- [36] Asaoka, A., Observational Procedure of Settlement Prediction of Settlemen. Soils and Foundation., 18, 4, 87-101, 1978.
- [37] Casagrande, A., The Determination of the Pre-Consolidation Load and Its Practical Significance, Discussion D-34, Proc. of First INT: Conf. on Soil Mech. And Found. Eng., Cmbridge, III, 60-64, 1936.
- [38] Boyle, P., Berthier, D., Holding, G., Ameratunga, J., De Bok, C., Successful Application of vacuum consolidation at Port of Brisbane. Ground Improvement Technologies and case histories, GeoSS, Singapore, 747-753, 2009.
- [39] Bergado, D.T., Singh, N., Sim, S.H., Panichyatum, B., Sampaco, C.L., Balasubramaniam, A.S., Improvement of soft Bangkok clay using vertical geotextile band drains compared with granular piles. Geotextiles and Geomenbranes, 9: 203-201, 1990.
- [40] Ganesalingam, D., Arulrajah, A., Ameratunga, J., Boyle, P. J., Sivakugan, N., Geotechnical properties of reconstituted dredged mud. Proceedings from the Pan-AM CGS Geotechnical Conference (pp. 1-7). Toronto, Canada. (2011).
- [41] Develioğlu İ., Pulat FH., Compressibility behaviour of natural and stabilized dredged soils in different organic matter content. Construction and Building Materials, 228, 1-11, 2019.
- [42] Stroud, M.A., The standard penetration test in insensitive clays and soft rock, Proceedings of European Symposium on Penetration Resistance. National Swedish Institute for Building Research, Stockholm, Sweden, 2.2, 367-375, 1974.