Hidrolojik Model Kalibrasyonunda Uydu Tabanlı Aylık Buharlaşma ve LAI Verilerinin Kullanılması
Year 2022,
Volume: 33 Issue: 6, 13013 - 13035, 01.11.2022
Muhammet Bahattin Avcuoglu
,
Mehmet Cüneyd Demirel
Abstract
Hidrolojik model parametreleri geleneksel yaklaşımda havza çıkışındaki akım gözlem istasyonlarından (AGİ) elde edilen günlük akım verileriyle tahmin edilmeye çalışılır. Modern yaklaşımda ise akım verileri yanında açık erişimli uydu tabanlı uzaktan algılama verilerinden de faydalanılır. Uzaktan algılama verilerinin kullanıldığı yöntem ile sadece akım verisiyle elde edilen noktasal iyileştirme sonuçlarının yanında alana yayılı kar örtüsü, gerçek buharlaşma, yaprak alan indeksi, toprak nemi ve yer altı suyu beslenmesi gibi akı değerlerinin de daha tutarlı ve güvenilir olması sağlanır. Bu çalışmamızın amacı uzaktan algılama yöntemleriyle elde edilmiş MODIS aylık gerçek evapotranspirasyon (AET) verileri ile yaprak alan indeksi (LAI) haritalarının hidrolojik model kalibrasyonuna etkilerini araştırmaktır. Benzeşim deneylerimiz için Vienne (Fransa) havzası seçilmiştir. Fizik tabanlı tam yayılı mHM hidrolojik modeli bu havza için çalıştırılmış ve 6 senaryo için kalibrasyonlar yapılmıştır. Modelin akım benzeşim performansı Kling-Gupta (KGE) metriği ile modelin yayılı evapotranspirasyon performansı ise SPAEF metriği ile ortaya konmuştur. Sonuçlara göre, sadece havza çıkışındaki AGİ verilerine göre kalibre edilen model KGE 0.91’ye ulaşırken (maksimum 1), SPAEF buharlaşma performansı düşüktür. Havzaya yayılmış 4 AGİ’li kalibrasyonda ortlama KGE 0.37 iken SPAEF kısmen iyileşmiştir. Tek AGİ ve MODIS-AET birlikte kalibrasyonda kullanıldığında KGE 0.90 SPAEF ~0.70 olmuştur. Dördüncü senaryomuzda model sadece MODIS-AET ile kalibre edilmiş SPAEF 0.60’e ulaşmıştır. Öte yandan su dengesi tutturulamamıştır (KGE -0.24). Beşinci senaryoda, model sadece 12 adet akım verisi ve MODIS-AET ile kalibre edilmiş ve KGE 0.67 iken SPAEF 0.75 gibi yüksek değerler almıştır. Altıncı son senaryoda sadece bir yıl günlük akım gözlemi yapıldığı varsayımı yapılarak MODIS-AET’nin de dahil edildiği model kalibrasyonu yapıldığında KGE 0.72 ve SPAEF yine 0.75 dolaylarında yüksek değerler almıştır. Bu altı senaryolu model kalibrasyon çalışmamızın sonuçları akım ölçümleri eksik havzalar için ümit vericidir. Öyle ki; uydu verilerinden elde edilen gerçek evapotranspirasyon (AET) ile birlikte sadece bir yıl günlük veya bir yılın her ayından bir debi ölçümü toplamda 12 debi değeri ile dahi yeterli su dengesi sağlanabilmektedir.
Supporting Institution
TÜBİTAK 2232 programı
Thanks
Yazarlar Türkiye Ulusal Yüksek Performanslı Hesaplama Merkezine (UHeM) 1007292019 ve 4008242020 numaralı destekler için teşekkür eder. Yine yazarlar, Danimarka Villum Fonu’nun (http://villumfonden.dk/) SPACE projesine Genç Araştırmacı Programının sağladığı VKR023443 numaralı destek için teşekkür eder. İkinci yazar (MCD) TÜBİTAK 2232 programı kapsamında 118C020 numaralı projesiyle desteklenmiştir. Tüm MODIS verileri, “NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, Güney Dakota, https://lpdaac.usgs.gov/data_access/data_pool.” izniyle çevrimiçi veri havuzundan alınmıştır. Yaprak alan indeksi ile PET düzeltmesi yapabilen dinamik ölçekleme fonksiyonu mHM sürüm 5.8 ve sonrasındaki yeni versiyonlarda mevcuttur (www.ufz.de/mhm/). Spatial Efficiency (SPAEF) için R, Python ve Matlab betikleri örnekleriyle birlikte SPACE projesi web sitesinde (http://www.space.geus.dk/) ve Researchgate sunucularında mevcuttur.
References
- K. K. Yilmaz, J. A. Vrugt, H. V. Gupta, ve S. Sorooshian, “MODEL CALIBRATION IN WATERSHED HYDROLOGY”, içinde Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting, WORLD SCIENTIFIC, 2010, ss. 53–105.
- S. Wi, Y. C. E. Yang, S. Steinschneider, A. Khalil, ve C. M. Brown, “Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change”, Hydrol. Earth Syst. Sci., c. 19, sayı 2, ss. 857–876, Şub. 2015, doi: 10.5194/hess-19-857-2015.
- A. Kunnath-Poovakka, D. Ryu, T. I. Eldho, ve B. George, “Parameter Uncertainty of a Hydrologic Model Calibrated with Remotely Sensed Evapotranspiration and Soil Moisture”, J. Hydrol. Eng., c. 26, sayı 3, s. 04020070, Mar. 2021, doi: 10.1061/(ASCE)HE.1943-5584.0002055.
- C. Corbari ve M. Mancini, “Calibration and Validation of a Distributed Energy–Water Balance Model Using Satellite Data of Land Surface Temperature and Ground Discharge Measurements”, J. Hydrometeorol., c. 15, sayı 1, ss. 376–392, Şub. 2014, doi: 10.1175/JHM-D-12-0173.1.
- L. Zhang, Y. Zhao, Q. Ma, P. Wang, Y. Ge, ve W. Yu, “A parallel computing-based and spatially stepwise strategy for constraining a semi-distributed hydrological model with streamflow observations and satellite-based evapotranspiration”, J. Hydrol., c. 599, s. 126359, Ağu. 2021, doi: 10.1016/j.jhydrol.2021.126359.
- B. BULUT ve M. T. YILMAZ, “Türkiye’deki 2007 ve 2013 Yılı Kuraklıklarının NOAH Hidrolojik Modeli ile İncelenmesi”, İMO Tek. Dergi, c. 27, sayı 4, ss. 7619–7634, 2016, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/tr/pub/tekderg/issue/28142/299116.
- K. K. Yilmaz, H. V. Gupta, ve T. Wagener, “A multi-criteria penalty function approach for evaluating a priori model parameter estimates”, J. Hydrol., c. 525, ss. 165–177, Haz. 2015, doi: 10.1016/j.jhydrol.2015.03.012.
- F. Yassin, S. Razavi, H. Wheater, G. Sapriza-Azuri, B. Davison, ve A. Pietroniro, “Enhanced identification of a hydrologic model using streamflow and satellite water storage data: A multicriteria sensitivity analysis and optimization approach”, Hydrol. Process., c. 31, sayı 19, ss. 3320–3333, Eyl. 2017, doi: 10.1002/hyp.11267.
- R. Becker, A. Koppa, S. Schulz, M. Usman, T. aus der Beek, ve C. Schüth, “Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data”, J. Hydrol., c. 577, sayı 10, s. 123944, Eki. 2019, doi: 10.1016/j.jhydrol.2019.123944.
- T. H. M. Rientjes, L. P. Muthuwatta, M. G. Bos, M. J. Booij, ve H. A. Bhatti, “Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration”, J. Hydrol., c. 505, ss. 276–290, Kas. 2013, doi: 10.1016/j.jhydrol.2013.10.006.
- J. Koch, K. H. Jensen, ve S. Stisen, “Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF-analysis benchmarked by the human perception and evaluated against a modeling case study”, Water Resour. Res., c. 51, sayı 2, ss. 1225–1246, Şub. 2015, doi: 10.1002/2014WR016607.
- M. Dembélé, M. Hrachowitz, H. H. G. Savenije, G. Mariéthoz, ve B. Schaefli, “Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets”, Water Resour. Res., c. 56, sayı 1, Oca. 2020, doi: 10.1029/2019WR026085.
- F. DİKBAŞ, “Büyük Menderes Akımlarının Frekans Tabanlı Tahmini”, İMO Tek. Dergi, c. 27, sayı 1, ss. 7325–7343, 2016, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/en/pub/tekderg/issue/28137/298971.
- A. A. Şorman, A. Şensoy, A. E. Tekeli, A. Ü. Şorman, ve Z. Akyürek, “Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey”, Hydrol. Process., c. 23, sayı 7, ss. 1031–1040, Mar. 2009, doi: 10.1002/hyp.7204.
- S. Stisen, M. F. McCabe, J. C. Refsgaard, S. Lerer, ve M. B. Butts, “Model parameter analysis using remotely sensed pattern information in a multi-constraint framework”, J. Hydrol., c. 409, sayı 1–2, ss. 337–349, Eki. 2011, doi: 10.1016/j.jhydrol.2011.08.030.
- M. Soltani, E. Bjerre, J. Koch, ve S. Stisen, “Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration”, J. Hydrol., c. 603, s. 127026, Ara. 2021, doi: 10.1016/j.jhydrol.2021.127026.
- B. Bulut vd., “Evaluation of Remotely-Sensed and Model-Based Soil Moisture Products According to Different Soil Type, Vegetation Cover and Climate Regime Using Station-Based Observations over Turkey”, Remote Sens., c. 11, sayı 16, s. 1875, Ağu. 2019, doi: 10.3390/rs11161875.
- M. E. KESKİN ve E. D. TAYLAN, “Orta Akdeniz Havzasındaki Akımların Stokastik Modellemesi”, İMO Tek. Dergi, c. 18, sayı 89, ss. 4271–4291, 2007, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/en/pub/tekderg/issue/12769/155280.
- J. Koch, G. Mendiguren, G. Mariethoz, ve S. Stisen, “Spatial Sensitivity Analysis of Simulated Land Surface Patterns in a Catchment Model Using a Set of Innovative Spatial Performance Metrics”, J. Hydrometeorol., c. 18, sayı 4, ss. 1121–1142, Nis. 2017, doi: 10.1175/JHM-D-16-0148.1.
- M. C. Demirel, J. Mai, G. Mendiguren, J. Koch, L. Samaniego, ve S. Stisen, “Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model”, Hydrol. Earth Syst. Sci., c. 22, sayı 2, ss. 1299–1315, Şub. 2018, doi: 10.5194/hess-22-1299-2018.
- R. S. S. Gaur, B. Singh, A. Bandyopadhyay, S. Stisen, “Spatial pattern-based performance evaluation and uncertainty analysis of a distributed hydrological model”, Hydrol. Process., c. 0, sayı e14586, 2022, doi: https://doi.org/10.1002/hyp.14586.
- L. Jiang, H. Wu, J. Tao, J. S. Kimball, L. Alfieri, ve X. Chen, “Satellite-Based Evapotranspiration in Hydrological Model Calibration”, Remote Sens., c. 12, sayı 3, s. 428, Oca. 2020, doi: 10.3390/rs12030428.
- S. Kim, H. Ajami, ve A. Sharma, “Using Remotely Sensed Information to Improve Vegetation Parameterization in a Semi-Distributed Hydrological Model (SMART) for Upland Catchments in Australia”, Remote Sens., c. 12, sayı 18, s. 3051, Eyl. 2020, doi: 10.3390/rs12183051.
- M. Dembélé, B. Schaefli, N. van de Giesen, ve G. Mariéthoz, “Suitability of 17 rainfall and temperature gridded datasets for largescale hydrological modelling in West Africa”, Hydrol. Earth Syst. Sci. Discuss., sayı April, ss. 1–39, 2020, doi: 10.5194/hess-2020-68.
- Q. Huang vd., “Using Remote Sensing Data‐Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments”, Water Resour. Res., c. 56, sayı 8, Ağu. 2020, doi: 10.1029/2020WR028205.
- Y. Zhang, F. H. S. Chiew, L. Zhang, ve H. Li, “Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia”, J. Hydrometeorol., c. 10, sayı 4, ss. 969–980, Ağu. 2009, doi: 10.1175/2009JHM1061.1.
- T. Poméon, B. Diekkrüger, A. Springer, J. Kusche, ve A. Eicker, “Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach”, Water, c. 10, sayı 4, s. 451, Nis. 2018, doi: 10.3390/w10040451.
- J. Koch, M. C. Demirel, ve S. Stisen, “The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models”, Geosci. Model Dev., c. 11, sayı 5, ss. 1873–1886, May. 2018, doi: 10.5194/gmd-11-1873-2018.
- M. Demirel, J. Koch, G. Mendiguren, ve S. Stisen, “Spatial Pattern Oriented Multicriteria Sensitivity Analysis of a Distributed Hydrologic Model”, Water, c. 10, sayı 9, s. 1188, Eyl. 2018, doi: 10.3390/w10091188.
- M. R. Herman vd., “Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability”, J. Hydrol., c. 556, sayı 1, ss. 39–49, Oca. 2018, doi: 10.1016/j.jhydrol.2017.11.009.
- A. Rajib, G. R. Evenson, H. E. Golden, ve C. R. Lane, “Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters”, J. Hydrol., c. 567, sayı 12, ss. 668–683, Ara. 2018, doi: 10.1016/j.jhydrol.2018.10.024.
- T. Roy, H. V. Gupta, A. Serrat-Capdevila, ve J. B. Valdes, “Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model”, Hydrol. Earth Syst. Sci., c. 21, sayı 2, ss. 879–896, Şub. 2017, doi: 10.5194/hess-21-879-2017.
- A. E. Odusanya vd., “Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria”, Hydrol. Earth Syst. Sci., c. 23, sayı 2, ss. 1113–1144, 2019, doi: 10.5194/hess-23-1113-2019.
- Q. Mu, M. Zhao, ve S. W. Running, “Improvements to a MODIS global terrestrial evapotranspiration algorithm”, Remote Sens. Environ., c. 115, sayı 8, ss. 1781–1800, Ağu. 2011, doi: 10.1016/j.rse.2011.02.019.
- R. Kumar, L. Samaniego, ve S. Attinger, “Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations”, Water Resour. Res., c. 49, sayı 1, ss. 360–379, Oca. 2013, doi: 10.1029/2012WR012195.
- Samaniego vd., “mesoscale Hydrologic Model - mHM v5.11.1”. Leipzig, Şub. 2021, doi: 10.5281/ZENODO.4462822.
- T. Poméon, B. Diekkrüger, ve R. Kumar, “Computationally Efficient Multivariate Calibration and Validation of a Grid-Based Hydrologic Model in Sparsely Gauged West African River Basins”, Water, c. 10, sayı 10, s. 1418, Eki. 2018, doi: 10.3390/w10101418.
- M. R. Haylock, N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, ve M. New, “A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006”, J. Geophys. Res., c. 113, sayı D20, s. D20119, Eki. 2008, doi: 10.1029/2008JD010201.
- O. Rakovec, R. Kumar, S. Attinger, ve L. Samaniego, “Improving the realism of hydrologic model functioning through multivariate parameter estimation”, Water Resour. Res., c. 52, sayı 10, ss. 7779–7792, 2016, doi: 10.1002/2016WR019430.
- R. C. Cornes, G. van der Schrier, E. J. M. van den Besselaar, ve P. D. Jones, “An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets”, J. Geophys. Res. Atmos., c. 123, sayı 17, ss. 9391–9409, Eyl. 2018, doi: 10.1029/2017JD028200.
- George H. Hargreaves ve Zohrab A. Samani, “Reference Crop Evapotranspiration from Temperature”, Appl. Eng. Agric., c. 1, sayı 2, ss. 96–99, 1985, doi: 10.13031/2013.26773.
- C. Willmott ve K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Clim. Res., c. 30, ss. 79–82, 2005, doi: 10.3354/cr030079.
- H. V. Gupta, H. Kling, K. K. Yilmaz, ve G. F. Martinez, “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling”, J. Hydrol., c. 377, sayı 1–2, ss. 80–91, Eki. 2009, doi: 10.1016/j.jhydrol.2009.08.003.
- J. Doherty, Model-Independent Parameter Estimation(Part I), 6. baskı. Watermark Numerical Computing, 2016.
- L. S. Matott, “OSTRICH: an Optimization Software Tool, Documentation and User’s Guide”. Ara. 17, 2004, Erişim: Ara. 28, 2020. [Çevrimiçi]. Available at: https://github.com/usbr/ostrich.
- L. Shawn Matott, “OSTRICH: an Optimization Software Tool, Documentation and User’s Guide, Version 17.12.19.” University at Buffalo Center for Computational Research, Buffalo, s. 79, 2017, [Çevrimiçi]. Available at: http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html.
- M. T. Yilmaz vd., “Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin”, Water Resour. Res., c. 50, sayı 1, ss. 386–408, Oca. 2014, doi: 10.1002/2013WR014194.
- M. Dembélé, N. Ceperley, S. J. Zwart, E. Salvadore, G. Mariethoz, ve B. Schaefli, “Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies”, Adv. Water Resour., c. 143, s. 103667, Eyl. 2020, doi: 10.1016/j.advwatres.2020.103667.
- A. A. Sorman, E. Tas, ve Y. O. Dogan, “Comparison of hydrological models in upper Aras Basin”, Pamukkale Univ. J. Eng. Sci., c. 26, sayı 6, ss. 1015–1022, 2020, doi: 10.5505/pajes.2019.98852.
- G. Uysal, A. Şensoy, ve A. A. Şorman, “Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products”, J. Hydrol., c. 543, sayı October, ss. 630–650, Ara. 2016, doi: 10.1016/j.jhydrol.2016.10.037.
- A. E. Tekeli, Z. Akyürek, A. Arda Şorman, A. Şensoy, ve A. Ünal Şorman, “Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey”, Remote Sens. Environ., c. 97, sayı 2, ss. 216–230, Tem. 2005, doi: 10.1016/j.rse.2005.03.013.
- A. Şensoy, A. A. Şorman, A. E. Tekeli, A. Ü. Şorman, ve D. C. Garen, “Point-scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey”, Hydrol. Process., c. 20, sayı 4, ss. 899–922, Mar. 2006, doi: 10.1002/hyp.6120.
- A. Şensoy ve G. Uysal, “The Value of Snow Depletion Forecasting Methods Towards Operational Snowmelt Runoff Estimation Using MODIS and Numerical Weather Prediction Data”, Water Resour. Manag., c. 26, sayı 12, ss. 3415–3440, Eyl. 2012, doi: 10.1007/s11269-012-0079-0.
- I. Yucel, A. Onen, K. K. Yilmaz, ve D. J. Gochis, “Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall”, J. Hydrol., c. 523, ss. 49–66, Nis. 2015, doi: 10.1016/j.jhydrol.2015.01.042.
- M. Tarek, F. P. Brissette, ve R. Arsenault, “Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America”, Hydrol. Earth Syst. Sci., c. 24, sayı 5, ss. 2527–2544, May. 2020, doi: 10.5194/hess-24-2527-2020.
On the Utility of Remotely Sensed Actual ET and LAI in Hydrologic Model Calibration
Year 2022,
Volume: 33 Issue: 6, 13013 - 13035, 01.11.2022
Muhammet Bahattin Avcuoglu
,
Mehmet Cüneyd Demirel
Abstract
Hydrological model parameters are usually calibrated based on the performance of the daily river discharge data recorded at the basin outlet. In the unconvetional approach, satellite-based remote sensing data, which is open to everyone, is utilized in addition to the discharge data. The latter approach is aslo called spatial calibration in hydrology. The objective of this study is to assess the utility of remotely sensed actual evapotranspiration (AET) and monthly leaf area index (LAI) maps on the calibration of the hydrological model. For this, six different calibration cases (scenarios) are designed using a physically-based hydrologic model for the Vienne basin in France. It should be noted that LAI is used to estimate interception and correct the PET in the model i.e. both affecting the simulated AET. The daily discharge simulation performance of the model is assessed using KGE and the spatial performance of the model is assessed using SPAEF i.e. between mHM's long-term (2002-2014) monthly average AET raster output maps and reference MODIS-AET maps. According to the results, the KGE for scenario 1 (single AGI) was 0.91, SPAEF was below zero; for scenario 2 (with 4 AGI), the KGE was 0.37 while the SPAEF was positive; for scenario 3 (Single AGI and MODIS-AET), the KGE was 0.90 while the SPAEF were ~0.70; For the 4th scenario (MODIS-AET only), the KGE was -0.24, SPAEF was around 0.60, for scenario 5 (12 flow data and MODIS-AET) the KGE was 0.67, SPAEF was around 0.75; for scenario 6 (one-year daily flow and MODIS-AET) KGE 0.72 and SPAEF was around 0.75. Our results are promising even for poorly gaged basins as we could reach reasonable performance with satellite based AET and only 12 discharge measurements.
References
- K. K. Yilmaz, J. A. Vrugt, H. V. Gupta, ve S. Sorooshian, “MODEL CALIBRATION IN WATERSHED HYDROLOGY”, içinde Advances in Data-Based Approaches for Hydrologic Modeling and Forecasting, WORLD SCIENTIFIC, 2010, ss. 53–105.
- S. Wi, Y. C. E. Yang, S. Steinschneider, A. Khalil, ve C. M. Brown, “Calibration approaches for distributed hydrologic models in poorly gaged basins: Implication for streamflow projections under climate change”, Hydrol. Earth Syst. Sci., c. 19, sayı 2, ss. 857–876, Şub. 2015, doi: 10.5194/hess-19-857-2015.
- A. Kunnath-Poovakka, D. Ryu, T. I. Eldho, ve B. George, “Parameter Uncertainty of a Hydrologic Model Calibrated with Remotely Sensed Evapotranspiration and Soil Moisture”, J. Hydrol. Eng., c. 26, sayı 3, s. 04020070, Mar. 2021, doi: 10.1061/(ASCE)HE.1943-5584.0002055.
- C. Corbari ve M. Mancini, “Calibration and Validation of a Distributed Energy–Water Balance Model Using Satellite Data of Land Surface Temperature and Ground Discharge Measurements”, J. Hydrometeorol., c. 15, sayı 1, ss. 376–392, Şub. 2014, doi: 10.1175/JHM-D-12-0173.1.
- L. Zhang, Y. Zhao, Q. Ma, P. Wang, Y. Ge, ve W. Yu, “A parallel computing-based and spatially stepwise strategy for constraining a semi-distributed hydrological model with streamflow observations and satellite-based evapotranspiration”, J. Hydrol., c. 599, s. 126359, Ağu. 2021, doi: 10.1016/j.jhydrol.2021.126359.
- B. BULUT ve M. T. YILMAZ, “Türkiye’deki 2007 ve 2013 Yılı Kuraklıklarının NOAH Hidrolojik Modeli ile İncelenmesi”, İMO Tek. Dergi, c. 27, sayı 4, ss. 7619–7634, 2016, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/tr/pub/tekderg/issue/28142/299116.
- K. K. Yilmaz, H. V. Gupta, ve T. Wagener, “A multi-criteria penalty function approach for evaluating a priori model parameter estimates”, J. Hydrol., c. 525, ss. 165–177, Haz. 2015, doi: 10.1016/j.jhydrol.2015.03.012.
- F. Yassin, S. Razavi, H. Wheater, G. Sapriza-Azuri, B. Davison, ve A. Pietroniro, “Enhanced identification of a hydrologic model using streamflow and satellite water storage data: A multicriteria sensitivity analysis and optimization approach”, Hydrol. Process., c. 31, sayı 19, ss. 3320–3333, Eyl. 2017, doi: 10.1002/hyp.11267.
- R. Becker, A. Koppa, S. Schulz, M. Usman, T. aus der Beek, ve C. Schüth, “Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data”, J. Hydrol., c. 577, sayı 10, s. 123944, Eki. 2019, doi: 10.1016/j.jhydrol.2019.123944.
- T. H. M. Rientjes, L. P. Muthuwatta, M. G. Bos, M. J. Booij, ve H. A. Bhatti, “Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration”, J. Hydrol., c. 505, ss. 276–290, Kas. 2013, doi: 10.1016/j.jhydrol.2013.10.006.
- J. Koch, K. H. Jensen, ve S. Stisen, “Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF-analysis benchmarked by the human perception and evaluated against a modeling case study”, Water Resour. Res., c. 51, sayı 2, ss. 1225–1246, Şub. 2015, doi: 10.1002/2014WR016607.
- M. Dembélé, M. Hrachowitz, H. H. G. Savenije, G. Mariéthoz, ve B. Schaefli, “Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets”, Water Resour. Res., c. 56, sayı 1, Oca. 2020, doi: 10.1029/2019WR026085.
- F. DİKBAŞ, “Büyük Menderes Akımlarının Frekans Tabanlı Tahmini”, İMO Tek. Dergi, c. 27, sayı 1, ss. 7325–7343, 2016, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/en/pub/tekderg/issue/28137/298971.
- A. A. Şorman, A. Şensoy, A. E. Tekeli, A. Ü. Şorman, ve Z. Akyürek, “Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey”, Hydrol. Process., c. 23, sayı 7, ss. 1031–1040, Mar. 2009, doi: 10.1002/hyp.7204.
- S. Stisen, M. F. McCabe, J. C. Refsgaard, S. Lerer, ve M. B. Butts, “Model parameter analysis using remotely sensed pattern information in a multi-constraint framework”, J. Hydrol., c. 409, sayı 1–2, ss. 337–349, Eki. 2011, doi: 10.1016/j.jhydrol.2011.08.030.
- M. Soltani, E. Bjerre, J. Koch, ve S. Stisen, “Integrating remote sensing data in optimization of a national water resources model to improve the spatial pattern performance of evapotranspiration”, J. Hydrol., c. 603, s. 127026, Ara. 2021, doi: 10.1016/j.jhydrol.2021.127026.
- B. Bulut vd., “Evaluation of Remotely-Sensed and Model-Based Soil Moisture Products According to Different Soil Type, Vegetation Cover and Climate Regime Using Station-Based Observations over Turkey”, Remote Sens., c. 11, sayı 16, s. 1875, Ağu. 2019, doi: 10.3390/rs11161875.
- M. E. KESKİN ve E. D. TAYLAN, “Orta Akdeniz Havzasındaki Akımların Stokastik Modellemesi”, İMO Tek. Dergi, c. 18, sayı 89, ss. 4271–4291, 2007, Erişim: May. 21, 2022. [Çevrimiçi]. Available at: https://dergipark.org.tr/en/pub/tekderg/issue/12769/155280.
- J. Koch, G. Mendiguren, G. Mariethoz, ve S. Stisen, “Spatial Sensitivity Analysis of Simulated Land Surface Patterns in a Catchment Model Using a Set of Innovative Spatial Performance Metrics”, J. Hydrometeorol., c. 18, sayı 4, ss. 1121–1142, Nis. 2017, doi: 10.1175/JHM-D-16-0148.1.
- M. C. Demirel, J. Mai, G. Mendiguren, J. Koch, L. Samaniego, ve S. Stisen, “Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model”, Hydrol. Earth Syst. Sci., c. 22, sayı 2, ss. 1299–1315, Şub. 2018, doi: 10.5194/hess-22-1299-2018.
- R. S. S. Gaur, B. Singh, A. Bandyopadhyay, S. Stisen, “Spatial pattern-based performance evaluation and uncertainty analysis of a distributed hydrological model”, Hydrol. Process., c. 0, sayı e14586, 2022, doi: https://doi.org/10.1002/hyp.14586.
- L. Jiang, H. Wu, J. Tao, J. S. Kimball, L. Alfieri, ve X. Chen, “Satellite-Based Evapotranspiration in Hydrological Model Calibration”, Remote Sens., c. 12, sayı 3, s. 428, Oca. 2020, doi: 10.3390/rs12030428.
- S. Kim, H. Ajami, ve A. Sharma, “Using Remotely Sensed Information to Improve Vegetation Parameterization in a Semi-Distributed Hydrological Model (SMART) for Upland Catchments in Australia”, Remote Sens., c. 12, sayı 18, s. 3051, Eyl. 2020, doi: 10.3390/rs12183051.
- M. Dembélé, B. Schaefli, N. van de Giesen, ve G. Mariéthoz, “Suitability of 17 rainfall and temperature gridded datasets for largescale hydrological modelling in West Africa”, Hydrol. Earth Syst. Sci. Discuss., sayı April, ss. 1–39, 2020, doi: 10.5194/hess-2020-68.
- Q. Huang vd., “Using Remote Sensing Data‐Based Hydrological Model Calibrations for Predicting Runoff in Ungauged or Poorly Gauged Catchments”, Water Resour. Res., c. 56, sayı 8, Ağu. 2020, doi: 10.1029/2020WR028205.
- Y. Zhang, F. H. S. Chiew, L. Zhang, ve H. Li, “Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall–Runoff Modeling in Southeast Australia”, J. Hydrometeorol., c. 10, sayı 4, ss. 969–980, Ağu. 2009, doi: 10.1175/2009JHM1061.1.
- T. Poméon, B. Diekkrüger, A. Springer, J. Kusche, ve A. Eicker, “Multi-Objective Validation of SWAT for Sparsely-Gauged West African River Basins—A Remote Sensing Approach”, Water, c. 10, sayı 4, s. 451, Nis. 2018, doi: 10.3390/w10040451.
- J. Koch, M. C. Demirel, ve S. Stisen, “The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models”, Geosci. Model Dev., c. 11, sayı 5, ss. 1873–1886, May. 2018, doi: 10.5194/gmd-11-1873-2018.
- M. Demirel, J. Koch, G. Mendiguren, ve S. Stisen, “Spatial Pattern Oriented Multicriteria Sensitivity Analysis of a Distributed Hydrologic Model”, Water, c. 10, sayı 9, s. 1188, Eyl. 2018, doi: 10.3390/w10091188.
- M. R. Herman vd., “Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability”, J. Hydrol., c. 556, sayı 1, ss. 39–49, Oca. 2018, doi: 10.1016/j.jhydrol.2017.11.009.
- A. Rajib, G. R. Evenson, H. E. Golden, ve C. R. Lane, “Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters”, J. Hydrol., c. 567, sayı 12, ss. 668–683, Ara. 2018, doi: 10.1016/j.jhydrol.2018.10.024.
- T. Roy, H. V. Gupta, A. Serrat-Capdevila, ve J. B. Valdes, “Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model”, Hydrol. Earth Syst. Sci., c. 21, sayı 2, ss. 879–896, Şub. 2017, doi: 10.5194/hess-21-879-2017.
- A. E. Odusanya vd., “Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria”, Hydrol. Earth Syst. Sci., c. 23, sayı 2, ss. 1113–1144, 2019, doi: 10.5194/hess-23-1113-2019.
- Q. Mu, M. Zhao, ve S. W. Running, “Improvements to a MODIS global terrestrial evapotranspiration algorithm”, Remote Sens. Environ., c. 115, sayı 8, ss. 1781–1800, Ağu. 2011, doi: 10.1016/j.rse.2011.02.019.
- R. Kumar, L. Samaniego, ve S. Attinger, “Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations”, Water Resour. Res., c. 49, sayı 1, ss. 360–379, Oca. 2013, doi: 10.1029/2012WR012195.
- Samaniego vd., “mesoscale Hydrologic Model - mHM v5.11.1”. Leipzig, Şub. 2021, doi: 10.5281/ZENODO.4462822.
- T. Poméon, B. Diekkrüger, ve R. Kumar, “Computationally Efficient Multivariate Calibration and Validation of a Grid-Based Hydrologic Model in Sparsely Gauged West African River Basins”, Water, c. 10, sayı 10, s. 1418, Eki. 2018, doi: 10.3390/w10101418.
- M. R. Haylock, N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, ve M. New, “A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006”, J. Geophys. Res., c. 113, sayı D20, s. D20119, Eki. 2008, doi: 10.1029/2008JD010201.
- O. Rakovec, R. Kumar, S. Attinger, ve L. Samaniego, “Improving the realism of hydrologic model functioning through multivariate parameter estimation”, Water Resour. Res., c. 52, sayı 10, ss. 7779–7792, 2016, doi: 10.1002/2016WR019430.
- R. C. Cornes, G. van der Schrier, E. J. M. van den Besselaar, ve P. D. Jones, “An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets”, J. Geophys. Res. Atmos., c. 123, sayı 17, ss. 9391–9409, Eyl. 2018, doi: 10.1029/2017JD028200.
- George H. Hargreaves ve Zohrab A. Samani, “Reference Crop Evapotranspiration from Temperature”, Appl. Eng. Agric., c. 1, sayı 2, ss. 96–99, 1985, doi: 10.13031/2013.26773.
- C. Willmott ve K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance”, Clim. Res., c. 30, ss. 79–82, 2005, doi: 10.3354/cr030079.
- H. V. Gupta, H. Kling, K. K. Yilmaz, ve G. F. Martinez, “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling”, J. Hydrol., c. 377, sayı 1–2, ss. 80–91, Eki. 2009, doi: 10.1016/j.jhydrol.2009.08.003.
- J. Doherty, Model-Independent Parameter Estimation(Part I), 6. baskı. Watermark Numerical Computing, 2016.
- L. S. Matott, “OSTRICH: an Optimization Software Tool, Documentation and User’s Guide”. Ara. 17, 2004, Erişim: Ara. 28, 2020. [Çevrimiçi]. Available at: https://github.com/usbr/ostrich.
- L. Shawn Matott, “OSTRICH: an Optimization Software Tool, Documentation and User’s Guide, Version 17.12.19.” University at Buffalo Center for Computational Research, Buffalo, s. 79, 2017, [Çevrimiçi]. Available at: http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html.
- M. T. Yilmaz vd., “Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin”, Water Resour. Res., c. 50, sayı 1, ss. 386–408, Oca. 2014, doi: 10.1002/2013WR014194.
- M. Dembélé, N. Ceperley, S. J. Zwart, E. Salvadore, G. Mariethoz, ve B. Schaefli, “Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies”, Adv. Water Resour., c. 143, s. 103667, Eyl. 2020, doi: 10.1016/j.advwatres.2020.103667.
- A. A. Sorman, E. Tas, ve Y. O. Dogan, “Comparison of hydrological models in upper Aras Basin”, Pamukkale Univ. J. Eng. Sci., c. 26, sayı 6, ss. 1015–1022, 2020, doi: 10.5505/pajes.2019.98852.
- G. Uysal, A. Şensoy, ve A. A. Şorman, “Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products”, J. Hydrol., c. 543, sayı October, ss. 630–650, Ara. 2016, doi: 10.1016/j.jhydrol.2016.10.037.
- A. E. Tekeli, Z. Akyürek, A. Arda Şorman, A. Şensoy, ve A. Ünal Şorman, “Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey”, Remote Sens. Environ., c. 97, sayı 2, ss. 216–230, Tem. 2005, doi: 10.1016/j.rse.2005.03.013.
- A. Şensoy, A. A. Şorman, A. E. Tekeli, A. Ü. Şorman, ve D. C. Garen, “Point-scale energy and mass balance snowpack simulations in the upper Karasu basin, Turkey”, Hydrol. Process., c. 20, sayı 4, ss. 899–922, Mar. 2006, doi: 10.1002/hyp.6120.
- A. Şensoy ve G. Uysal, “The Value of Snow Depletion Forecasting Methods Towards Operational Snowmelt Runoff Estimation Using MODIS and Numerical Weather Prediction Data”, Water Resour. Manag., c. 26, sayı 12, ss. 3415–3440, Eyl. 2012, doi: 10.1007/s11269-012-0079-0.
- I. Yucel, A. Onen, K. K. Yilmaz, ve D. J. Gochis, “Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall”, J. Hydrol., c. 523, ss. 49–66, Nis. 2015, doi: 10.1016/j.jhydrol.2015.01.042.
- M. Tarek, F. P. Brissette, ve R. Arsenault, “Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America”, Hydrol. Earth Syst. Sci., c. 24, sayı 5, ss. 2527–2544, May. 2020, doi: 10.5194/hess-24-2527-2020.