Research Article
BibTex RIS Cite

NANOFIBER YARN PRODUCTION METHODS BY ELECTROSPINNING

Year 2015, Volume: 22 Issue: 99, 50 - 67, 30.09.2015
https://doi.org/10.7216/130075992015229906

Abstract

Nano-size fiber production by electrospinning has been a common application method recently due to both being an easy and flexible system and high performance of the fibers produced. Generally in this system, fibers are produced directly as a non-woven surface of fiber-web and this limits potential end-uses of these high performance fibers. However direct spinning of these special fibers into a yarn form rather than production as a web-surface by electrospinning method would lead to an easy conversion of these fibers into woven or knitted fabrics and therefore widen the use area of these fibers substantially. In this respect, this work describes the novel approaches and methods for nanofiber yarn production by electrospinning classifying available but limited studies into two main categories: (i) parallel bundle of nanofiber yarn spinning methods, and (ii) twisted nanofiber yarn spinning methods. The results show that these highly special nanofiber yarns, which can have desired fineness, twist and functionality, could easily be designed and spun for a specific enduse by careful selection of the spinning method, choice of polymer and production parameters

References

  • Temel Çalışma Prensibi Elde Edilen İpliklere Ait Teknik Özellikler 4a Ortalama İplik Çapı: Yaklaşık 5-10 µm Kullanılan Polimerler Naylon 6 (%20) ve MW Karbonnanotüpler (%1) 4b (2009) Dönüş devri: 500-750 tur/dk
  • Özlü iplik besleme açısı: 0˚ İplik sarım hızı: 1.5m/sn 4c (2010)
  • Polimer besleme hızı: 0.3 ml/dk Ortalama lif çapı: 1 µm 4d (2010)
  • Polimer besleme hızı: 0.3 ml/dk Ortalama lif çapı: 5 µm 4e (2010)
  • Polimer besleme hızı: 0.3ml/dk Ortalama lif çapı: 0.8µm 4f Lee (2010)
  • İplik incelikleri: 30-40 µm Ortalama lif çapı: NiO iplik için 98.6nm CuO iplik için 276±4nm SnO2 iplik için 362±35nm ZnO iplik için Toplayıcı devri: 100-1000d/dk 5b Afifi (2010)
  • Ortalama iplik inceliği: 30-450 µm (164 µm çapında sürekli iplik eldesi) Ortalama lif çapı: 480-1500 nm 5c Ali (2012) İplik çapı: 30-450 µm
  • Ortalama lif çapı: 480nm-1.5µm Kullanılan polimerler: PVDF–HFP Sarım Hızı: 0.33 m/dk 5d Ravandi (2015) [28] İplik bükümü: 2900t/m İplik numarası: 19 tex
  • Tablo Eşlenik Sistemler Elde Edilen İpliklere ait Teknik Özellikler Dabirian (2009) [29]
  • İplik üretim hızı: 5.76 m/saat Uygulanan gerilim: 8 kV 6b Aslı (2010)
  • Kullanılan polimerler: %4 SWNT içeren PLA ve PAN Ortalama lif çapı: 50-100nm 7b Kim (2005) [2]
  • Electrospun Nanofibers, Advances in Nanofiber Research, Vol.2, 83-92. Smit, E., Buttner, U., Sanderson, R. D., (2007), Continuous
  • Yarns from Electrospun Nanofibers, Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Ltd, 45- Göktepe, F., Buzol Mülayim, B., (2015), Electrospun Yarn
  • Production by Use of Funnel Collector, 15th AUTEX World Textile Conference, Romania. Ali, U., Zhou, Y., Wang, X., Lin, T., (2011), Direct
  • Electrospinning of Highly Twisted, Continuous Nanofiber Yarns, The Journal of the Textile Institute, Vol.103-1, 80– Ali, U., Yaqiong, Z., Xungai, W., Tong, L., (2011),
  • Electrospinning of Continuous Nanofiber Bundles and Twisted Nanofiber Yarns, Nanofibers - Production, Properties and Functional Applications, ISBN:978-953-307- 420-7, (http://www.intechopen.com/books/nanofibers-production- properties-and-functionalapplications/electrospinning-of- continuous-nanofiber-bundles-and-twisted-nanofiber-yarns) Hongu, T., Phillips, G. O., Takigami, M., (2005), New
  • Millennium Fibers, Woodhead Publishing Limited, 273. Xie, Z., (2013), Polyacrylonitrile Nanofibre Yarn;
  • Electrospinning and Their Post-Drawing Behavior, MPhil. Thesis, Deakin University, Australia. Frank, K. K., Yingjie, L., Liting, L., Heejae, Y., (2013),
  • Multifunctional Composite Nanofibers, Journal of Fiber Bioengineering and Informatics, Vol. 6-2, 129-138. Cooley, J. F., (1902), Apparatus for Electrically Dispersing Fluids, US Patent 692,631.
  • Morton, W. J., (1902), Method of Dispersing Fluids, US Patent 705,691.
  • Formhals, A., (1934), Process and Apparatus for Preparing
  • Artificial Threads, US Patent 1,975,504. Formhals, A., (1938), Artificial Fiber Construction, US Patent 2,109,333.
  • Formhals, A., (1938), Method and Apparatus for the Production of Fibers, US Patent 2,123,992.
  • Formhals, A., (1939), Method and Apparatus for Spinning, US Patent 2,160,962.
  • Formhals, A., (1940), Artificial Thread and Method for
  • Producing Same, US Patent 2,187,306. Formhals, A., (1943), Artificial Fibers From Forming Liquids, US Patent 2,323,025.
  • Formhals, A., (1944), Method and Apparatus for Spinning, US Patent 2,349,950.
  • Lukas, (2010), Erişim tarihi:10.02.2015 https://www. google.com.tr/search?q=LUKAS+2010&rlz=1C1CHVZ_trT
  • R571TR571&oq=LUKAS+2010&aqs=chrome..69i57j0l3.85 20j0j1&sourceid=chrome&ie=UTF-8#q=+Physical+ principles+of+nanofiber+production+LUKAS+2010
  • Pan, H., Li, L., Hu, L., Cui, X., (2006), Continuous Aligned
  • Polymer Fibers Produced by a Modified Electrospinning Method, Elsevier Ltd, Polymer, Vol. 47, 4901–4904.
  • Tao, X. M., (2005), Wearable Electronics and Photonics,
  • Hong Kong Polytechnic University, Hong Kong. Lee, J. R., Jee, S.Y., Kim, H. J., Hong, Y. T., Kim, S., Park, S. J., (2010), Filament Bundle Type Nanofiber and Manufacturing Method, US Patent 7,803,460B2.
  • Kim, H. Y., (2010), Method of Manufacturing A Continuous
  • Filament By Electrospinning, US Patent 7,799,262B1. Dabirian, F., Hosseini, Y., Hosseini, Ravandi, S. A., (2007),
  • Manipulation of the Electric Field of Electrospinning System to Produce Polyacrylonitrile Nanofiber Yarn, The Journal of the Textile Institute, Vol. 98-3, 237–241. Bazbouz, M. B., Stylios, G., (2008), Novel Mechanism for
  • Spinning Continuous Twisted Composite Nanofiber Yarns, Macromolecular Nanotechnology, European Polymer Journal, Vol. 44, 1–12. Bazbouz, M. B., Stylios, G., (2009), A New Mechanism for the Electrospinning of Nano Yarns, Journal of Applied
  • Polymer Science, Vol. 124, 195–201. Lotus, A. F., (2009), Synthesis of Semiconducting Ceramic
  • Nanofibers, Development of P-N Junctions and Bandgap Engineering by Electrospinning, PhD Thesis, The Graduate Faculty of The University of Akron, ABD. Afifi, A., M., Nakano, S., Yamane, H., Kimura, Y., (2010),
  • Electrospinning of Continuous Aligning Yarns with a Funnel Target, Macromolecular Materials and Engineering, Vol. 295, 660–665. Ravandi, S. A. H., Tork, R. B., Dabirian, F., Gharehaghaji, A. A., Sajjadi, A., (2015), Characteristics of Yarn and Fabric Made out of Nanofibers, Materials Sciences and Applications, Vol. 6, 103-110.
  • Dabirian, F., Hosseini, S. A., (2009), Novel Method for
  • Nanofiber Yarn Production Using Two Differently Charged Nozzles, Fibres & Textiles in Eastern Europe, Vol. 17-3, 45- Aslı, M. M., Gharehaghaji, A.A., Johari, M. S., (2010),
  • Study on the Effects of Application of Surface Tension on the Structure of Electrospun Nanofiber Yarn, 7th International Conference, September 6-8, Czech Republic. Ko, F., Gotsi, Y., G., Ali, A., Naquib, N., Ye. H., Yang, G., Li, C., Willis, P., (2003), Electrospinning of Continuous
  • Carbon Nanotube Filled Nanofiber Yarns, Adv. Materials, Vol. 15, No 14, 1161-1165.

Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri

Year 2015, Volume: 22 Issue: 99, 50 - 67, 30.09.2015
https://doi.org/10.7216/130075992015229906

Abstract

Elektrik alan ile lif çekimiyle nanometre ölçeğinde inceliğe sahip elyaf üretimi, liflerin sağladığı üstün performans yanında kullanılan yöntemin basit olması ve esnek üretim şekli nedeniyle son yıllarda yaygın bir uygulama haline gelmiştir. Ancak mevcut uygulamalarda genel yaklaşımın, liflerin doğrudan ağ-doku oluşturacak şekilde dokusuz bir yüzey halinde üretim olması, yüksek özellikli söz konusu özel liflerin kullanım alanını sınırlamaktadır. Oysa bu yöntemle üretilen liflerin kesintisiz uzunlukta direkt iplik halinde eğrilebilmesi sağlandığı takdirde, bu liflerin dokuma veya örme yüzey haline dönüştürülmesi ve bu sayede ürünlerin çok daha geniş bir kullanım alanına kavuşması mümkün olacaktır. Bu amaç doğrultusunda sunulan çalışmayla, elektrik alan ile lif çekimiyle iplik üretimi konusunda henüz sınırlı sayıdaki mevcut özgün yaklaşım ve yöntemler; (i) nanoliflerden paralel lif demetleri halinde iplik eğirme yöntemleri ve (ii) nanoliflerden bükümlü iplik eğirme yöntemleri olmak üzere iki temel gruba ayrılarak incelenmektedir. Çalışmada ortaya konan bulgular; uygun eğirme yöntemi, uygun hammadde ve üretim parametrelerinin seçimi sonucu nanolifleri içeren özel ipliklerin arzu edilen incelik, büküm veya fonksiyonel özelliğe sahip olacak şekilde nihai amaca uygun şekilde tasarlanabileceğini ve eğirilebileceğini göstermektedir.

References

  • Temel Çalışma Prensibi Elde Edilen İpliklere Ait Teknik Özellikler 4a Ortalama İplik Çapı: Yaklaşık 5-10 µm Kullanılan Polimerler Naylon 6 (%20) ve MW Karbonnanotüpler (%1) 4b (2009) Dönüş devri: 500-750 tur/dk
  • Özlü iplik besleme açısı: 0˚ İplik sarım hızı: 1.5m/sn 4c (2010)
  • Polimer besleme hızı: 0.3 ml/dk Ortalama lif çapı: 1 µm 4d (2010)
  • Polimer besleme hızı: 0.3 ml/dk Ortalama lif çapı: 5 µm 4e (2010)
  • Polimer besleme hızı: 0.3ml/dk Ortalama lif çapı: 0.8µm 4f Lee (2010)
  • İplik incelikleri: 30-40 µm Ortalama lif çapı: NiO iplik için 98.6nm CuO iplik için 276±4nm SnO2 iplik için 362±35nm ZnO iplik için Toplayıcı devri: 100-1000d/dk 5b Afifi (2010)
  • Ortalama iplik inceliği: 30-450 µm (164 µm çapında sürekli iplik eldesi) Ortalama lif çapı: 480-1500 nm 5c Ali (2012) İplik çapı: 30-450 µm
  • Ortalama lif çapı: 480nm-1.5µm Kullanılan polimerler: PVDF–HFP Sarım Hızı: 0.33 m/dk 5d Ravandi (2015) [28] İplik bükümü: 2900t/m İplik numarası: 19 tex
  • Tablo Eşlenik Sistemler Elde Edilen İpliklere ait Teknik Özellikler Dabirian (2009) [29]
  • İplik üretim hızı: 5.76 m/saat Uygulanan gerilim: 8 kV 6b Aslı (2010)
  • Kullanılan polimerler: %4 SWNT içeren PLA ve PAN Ortalama lif çapı: 50-100nm 7b Kim (2005) [2]
  • Electrospun Nanofibers, Advances in Nanofiber Research, Vol.2, 83-92. Smit, E., Buttner, U., Sanderson, R. D., (2007), Continuous
  • Yarns from Electrospun Nanofibers, Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Ltd, 45- Göktepe, F., Buzol Mülayim, B., (2015), Electrospun Yarn
  • Production by Use of Funnel Collector, 15th AUTEX World Textile Conference, Romania. Ali, U., Zhou, Y., Wang, X., Lin, T., (2011), Direct
  • Electrospinning of Highly Twisted, Continuous Nanofiber Yarns, The Journal of the Textile Institute, Vol.103-1, 80– Ali, U., Yaqiong, Z., Xungai, W., Tong, L., (2011),
  • Electrospinning of Continuous Nanofiber Bundles and Twisted Nanofiber Yarns, Nanofibers - Production, Properties and Functional Applications, ISBN:978-953-307- 420-7, (http://www.intechopen.com/books/nanofibers-production- properties-and-functionalapplications/electrospinning-of- continuous-nanofiber-bundles-and-twisted-nanofiber-yarns) Hongu, T., Phillips, G. O., Takigami, M., (2005), New
  • Millennium Fibers, Woodhead Publishing Limited, 273. Xie, Z., (2013), Polyacrylonitrile Nanofibre Yarn;
  • Electrospinning and Their Post-Drawing Behavior, MPhil. Thesis, Deakin University, Australia. Frank, K. K., Yingjie, L., Liting, L., Heejae, Y., (2013),
  • Multifunctional Composite Nanofibers, Journal of Fiber Bioengineering and Informatics, Vol. 6-2, 129-138. Cooley, J. F., (1902), Apparatus for Electrically Dispersing Fluids, US Patent 692,631.
  • Morton, W. J., (1902), Method of Dispersing Fluids, US Patent 705,691.
  • Formhals, A., (1934), Process and Apparatus for Preparing
  • Artificial Threads, US Patent 1,975,504. Formhals, A., (1938), Artificial Fiber Construction, US Patent 2,109,333.
  • Formhals, A., (1938), Method and Apparatus for the Production of Fibers, US Patent 2,123,992.
  • Formhals, A., (1939), Method and Apparatus for Spinning, US Patent 2,160,962.
  • Formhals, A., (1940), Artificial Thread and Method for
  • Producing Same, US Patent 2,187,306. Formhals, A., (1943), Artificial Fibers From Forming Liquids, US Patent 2,323,025.
  • Formhals, A., (1944), Method and Apparatus for Spinning, US Patent 2,349,950.
  • Lukas, (2010), Erişim tarihi:10.02.2015 https://www. google.com.tr/search?q=LUKAS+2010&rlz=1C1CHVZ_trT
  • R571TR571&oq=LUKAS+2010&aqs=chrome..69i57j0l3.85 20j0j1&sourceid=chrome&ie=UTF-8#q=+Physical+ principles+of+nanofiber+production+LUKAS+2010
  • Pan, H., Li, L., Hu, L., Cui, X., (2006), Continuous Aligned
  • Polymer Fibers Produced by a Modified Electrospinning Method, Elsevier Ltd, Polymer, Vol. 47, 4901–4904.
  • Tao, X. M., (2005), Wearable Electronics and Photonics,
  • Hong Kong Polytechnic University, Hong Kong. Lee, J. R., Jee, S.Y., Kim, H. J., Hong, Y. T., Kim, S., Park, S. J., (2010), Filament Bundle Type Nanofiber and Manufacturing Method, US Patent 7,803,460B2.
  • Kim, H. Y., (2010), Method of Manufacturing A Continuous
  • Filament By Electrospinning, US Patent 7,799,262B1. Dabirian, F., Hosseini, Y., Hosseini, Ravandi, S. A., (2007),
  • Manipulation of the Electric Field of Electrospinning System to Produce Polyacrylonitrile Nanofiber Yarn, The Journal of the Textile Institute, Vol. 98-3, 237–241. Bazbouz, M. B., Stylios, G., (2008), Novel Mechanism for
  • Spinning Continuous Twisted Composite Nanofiber Yarns, Macromolecular Nanotechnology, European Polymer Journal, Vol. 44, 1–12. Bazbouz, M. B., Stylios, G., (2009), A New Mechanism for the Electrospinning of Nano Yarns, Journal of Applied
  • Polymer Science, Vol. 124, 195–201. Lotus, A. F., (2009), Synthesis of Semiconducting Ceramic
  • Nanofibers, Development of P-N Junctions and Bandgap Engineering by Electrospinning, PhD Thesis, The Graduate Faculty of The University of Akron, ABD. Afifi, A., M., Nakano, S., Yamane, H., Kimura, Y., (2010),
  • Electrospinning of Continuous Aligning Yarns with a Funnel Target, Macromolecular Materials and Engineering, Vol. 295, 660–665. Ravandi, S. A. H., Tork, R. B., Dabirian, F., Gharehaghaji, A. A., Sajjadi, A., (2015), Characteristics of Yarn and Fabric Made out of Nanofibers, Materials Sciences and Applications, Vol. 6, 103-110.
  • Dabirian, F., Hosseini, S. A., (2009), Novel Method for
  • Nanofiber Yarn Production Using Two Differently Charged Nozzles, Fibres & Textiles in Eastern Europe, Vol. 17-3, 45- Aslı, M. M., Gharehaghaji, A.A., Johari, M. S., (2010),
  • Study on the Effects of Application of Surface Tension on the Structure of Electrospun Nanofiber Yarn, 7th International Conference, September 6-8, Czech Republic. Ko, F., Gotsi, Y., G., Ali, A., Naquib, N., Ye. H., Yang, G., Li, C., Willis, P., (2003), Electrospinning of Continuous
  • Carbon Nanotube Filled Nanofiber Yarns, Adv. Materials, Vol. 15, No 14, 1161-1165.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatma Göktepe

Beyza Mülayim This is me

Publication Date September 30, 2015
Published in Issue Year 2015 Volume: 22 Issue: 99

Cite

APA Göktepe, F., & Mülayim, B. (2015). Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri. Tekstil Ve Mühendis, 22(99), 50-67. https://doi.org/10.7216/130075992015229906
AMA Göktepe F, Mülayim B. Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri. Tekstil ve Mühendis. September 2015;22(99):50-67. doi:10.7216/130075992015229906
Chicago Göktepe, Fatma, and Beyza Mülayim. “Elektrik Alan Lif Çekimi (Elektrospinning) Ile Nano Liflerden İplik Üretim Yöntemleri”. Tekstil Ve Mühendis 22, no. 99 (September 2015): 50-67. https://doi.org/10.7216/130075992015229906.
EndNote Göktepe F, Mülayim B (September 1, 2015) Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri. Tekstil ve Mühendis 22 99 50–67.
IEEE F. Göktepe and B. Mülayim, “Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri”, Tekstil ve Mühendis, vol. 22, no. 99, pp. 50–67, 2015, doi: 10.7216/130075992015229906.
ISNAD Göktepe, Fatma - Mülayim, Beyza. “Elektrik Alan Lif Çekimi (Elektrospinning) Ile Nano Liflerden İplik Üretim Yöntemleri”. Tekstil ve Mühendis 22/99 (September 2015), 50-67. https://doi.org/10.7216/130075992015229906.
JAMA Göktepe F, Mülayim B. Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri. Tekstil ve Mühendis. 2015;22:50–67.
MLA Göktepe, Fatma and Beyza Mülayim. “Elektrik Alan Lif Çekimi (Elektrospinning) Ile Nano Liflerden İplik Üretim Yöntemleri”. Tekstil Ve Mühendis, vol. 22, no. 99, 2015, pp. 50-67, doi:10.7216/130075992015229906.
Vancouver Göktepe F, Mülayim B. Elektrik Alan Lif Çekimi (Elektrospinning) ile Nano Liflerden İplik Üretim Yöntemleri. Tekstil ve Mühendis. 2015;22(99):50-67.