Review
BibTex RIS Cite

Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi

Year 2016, Volume: 23 Issue: 104, 277 - 287, 29.12.2016
https://doi.org/10.7216/1300759920162310405

Abstract

Kişisel koruyucu donanımlar, çalışanların iş yerinde maruz kaldıkları sağlık ve güvenliklerini tehdit eden tehlikelerden korunması amacıyla tasarlanmışlardır. Tehlike çeşitlerine göre sınıflandırılan kişisel koruyucu donanımlardan biri olan ısı ve ateşe karşı koruyucu giysilerin çalışanı koruma performansı, deri ve giysi arasında oluşan hava boşluklarının şekilleri, boyutları ve dağılımından etkilenmektedir. Yapılan bu derleme makalede öncelikle hava boşluklarını etkileyen faktörler ve hava boşlukları boyunca ısının transfer mekanizması incelenmiştir. Daha sonra termal koruyucu giysilerde koruma performansı açıklanarak, giysi ve vücut arasında oluşan hava boşluklarının koruma performansı üzerindeki etkileri literatür ışığında değerlendirilmiştir. 

References

  • Rossi, R. M., (2005), Interactions between Protection and Thermal Comfort, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge.
  • Ghazy, A., ve Bergstrom, D. J., (2011). Influence of The Air Gap Between Protective Clothing and Skin on Clothing Performance During Flash Fire Exposure, Heat And Mass Transfer, 47(10), 1275-1288.
  • Wang, Y. Y., Lu, Y. H., Li, J., ve Pan, J. H., (2012), Effects of Air Gap Entrapped in Multilayer Fabrics and Moisture on Thermal Protective Performance, Fibers and Polymers, 13(5), 647-652.
  • Daanen, H., Hatcher, K., ve Havenith, G., (2005), Determination of Clothing Microclimate Volume, Elsevier Ergonomics Book Series, 3, 361-365.
  • Daannen, H., ve Reffeltrath, P., (2007), Function, Fit and Sizing, Sizing in Clothing (ed. Ashdown, S.), Woodhead Publishing Limited, Cambridge.
  • Zhang, Z., ve Li, J., (2011), Volume of Air Gaps under Clothing and Its Related Thermal Effects, Journal of Fiber Bioengineering and Informatics, 4(2), 137-144.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015). Air Gap Thickness and Contact Area in Undershirts with Various Moisture Contents: Influence of Garment Fit, Fabric Structure and Fiber Composition, Textile Research Journal, 85(20), 2196-2207.
  • Li, X., Wang, Y., ve Lu, Y., (2011), Effects of Body Postures on Clothing Air Gap in Protective Clothing, Journal of Fiber Bioengineering & Informatics, 4(3), 277-283.
  • Lotens, W. A., ve Havenith, G., (1991), Calculation of Clothing Insulation and Vapour Resistance, Ergonomics, 34(2), 233-254.
  • Song, G., Barker, R. L., Hamouda, H., Kuznetsov, A. V., Chitrphiromsri, P., ve Grimes, R. V., (2004), Modeling the Thermal Protective Performance of Heat Resistant Garments in Flash Fire Exposures, Textile Research Journal, 74(12), 1033-1040.
  • Zhang, Z., Wang, Y., ve Li, J., (2010), Mathematical Simulation and Experimental Measurement of Clothing Surface Temperature under Different Sized Air Gaps, Fibers and Polymers, 11(6), 911-916.
  • Mah, T., ve Song, G., (2010a), Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps Using Three-Dimensional Body Scanning for Women’s Protective Clothing. Textile Research Journal, 80(13), 1317-1329.
  • Zhang, Z. H., Wang, Y., ve Li, J., (2011), Model for Predicting the Effect of an Air Gap on The Heat Transfer of a Clothed Human Body, Fibres & Textiles in Eastern Europe, 4, 105-110.
  • Psikuta, A., Frackiewicz-Kaczmarek, J., Frydrych, I. K., ve Rossi, R. M., (2012). Quantitative Evaluation of Air Gap Thickness and Contact Area between Body and Garment, Textile Research Journal, 82(14), 1405-1413.
  • Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2016), The Effect of Body Postures on the Distribution of Air Gap Thickness and Contact Area, International Journal of Biometeorology, doi:10.1007/s00484-016-1217-9
  • Yu, M., Wang, Y., Wang, Y., ve Li, J., (2013), Correlation between Clothing Air Gap Space and Fabric Mechanical Properties, Journal of the Textile Institute, 104(1), 67-77.
  • Song, G., (2007), Clothing Air Gap Layers and Thermal Protective Performance in Single Layer Garment, Journal of Industrial Textiles, 36(3), 193-205.
  • Zhang, Z., Li, J., ve Wang, Y., (2015), Improving Garment Thermal Insulation Property By Combining Two Non-Contact Measuring Tools, Indian Journal of Fibre & Textile Research, 40(4), 392-398.
  • Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015), Effect of Heterogenous and Homogenous Air Gaps on Dry Heat Loss through the Garment. International Journal Of Biometeorology, 59(11), 1701-1710.
  • Kim, I. Y., Lee, C., Li, P., Corner, B. D., ve Paquette, S., (2002), Investigation of Air Gaps Entrapped in Protective Clothing Systems, Fire and Materials, 26(3), 121-126.
  • Li, J., Zhang, Z., ve Wang, Y., (2013), The Relationship between Air Gap Sizes and Clothing Heat Transfer Performance, The Journal of The Textile Institute, 104(12), 1327-1336.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015b). Effect of Garment Properties on Air Gap Thickness and The Contact Area Distribution, Textile Research Journal, 85(18), 1907-1918.
  • Parsons, K. C., Havenith, G., Holmer, I., Nilsson, H., ve Malchaire, J., (1999). The Effects of Wind and Human Movement on the Heat and Vapour Transfer Properties of Clothing, Annals of Occupational Hygiene, 43(5), 347-352.
  • Choi, J., Kim, H., Kang, B., Nama, Y., Chung, M. K., ve Jung, H.,(2014), Analysis of Clothing Air Gap in a Protective Suit According to the Body Postures, Journal of Fiber Bioengineering and Informatics, 7(4), 573-581.
  • Voelker, C., Hoffmann, S., Kornadt, O., Arens, E., Zhang, H., ve Huizenga, C. (2009), Heat and Moisture Transfer through Clothing, 11th International IBPSA Conference, Glasgow.
  • Talukdar, P., Das, A., ve Alagurisamy, R., (2016), Heat and Mass Transfer through Thermal Protective Clothing – A Review, International Journal of Thermal Sciences, 106, 32-56.
  • Lee, Y., Hong, K., ve Hong, S. A., (2007), 3D Quantification of Microclimate Volume in Layered Clothing for the Prediction of Clothing Insulation, Applied Ergonomics, 38(3), 349-355.
  • Torvi, D. A., (1996), Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions, Doktora Tezi, Makine Mühendisliği Bölümü, Alberta Üniversitesi, Alberta.
  • Chen, Y. S., Fan, J., Qian, X., ve Zhang, W., (2004), Effect of Garment Fit on Thermal Insulation And Evaporative Resistance, Textile Research Journal, 74(8), 742-748.
  • Horrocks, R., (2005), Thermal (heat and fire) Protection, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge.
  • Ömeroğulları, Z., ve Kut, D., (2012), Tekstilde Güç Tutuşurluk, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(1), 27-41.
  • Song, G. W., ve Lu, Y. H., (2013), Flame Resistant Textiles for Structural and Proximity Fire Fighting, Handbook of Fire Resistant Textiles, Woodhead Publishing Limited, Cambridge.
  • Song, G., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., ve Ackerman, M., (2010), Thermal Protective Performance of Protective Clothing Used for Low Radiant Heat Protection, Textile Research Journal, 81(3), 311-323.
  • Bulgun, E., ve Yılmaz, M., (2010), İtfaiye Elbiseleri Tasarımında Son Gelişmeler, Tekstil ve Mühendis, 77, 20-28.
  • Behnke, W. P., (1977), Thermal Protective Performance Test for Clothing, Fire Technology, 13(1), 6-12.
  • Lawson, J. R., ve Twilley, W. H., (1999), Development of an Apparatus for Measuring the Thermal Performance of Fire Fighters' Protective Clothing, US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg.
  • Barker, R. L., Guerth-Schacher, C., Grimes, R. V., ve Hamouda, H., (2006), Effects of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing in Low-Level Radiant Heat Exposures, Textile Research Journal, 76(1), 27-31.
  • Sawcyn, C. M., ve Torvi, D. A., (2009), Improving Heat Transfer Models of Air Gaps in Bench Top Tests of Thermal Protective Fabrics, Textile Research Journal, 79(7), 632-644.
  • Su, Y., Wang, Y., ve Li, J., (2016), Evaluation Method for Thermal Protection of Firefighters’ Clothing in High-Temperature and High-Humidity Condition: A Review, International Journal of Clothing Science and Technology, 28(4), 429-448.
  • Wang, M., Li, X., ve Li, J., (2015), Correlation of Bench Scale and Manikin Testing of Fire Protective Clothing with Thermal Shrinkage Effect Considered, Fibers and Polymers, 16(6), 1370-1377.
  • Barker, R. L., (2005), A Review of Gaps and Limitations in Test Methods for First Responder Protective Clothing and Equipment, Final Raporu, National Institute for Occupational Safety and Health.
  • Lee, C., Kim, I. Y., ve Wood, A., (2002), Investigation and Correlation of Manikin and Bench-Scale Fire Testing of Clothing Systems, Fire and Materials, 26(6), 269-278.
  • Li, J., Lu, Y., ve Li, X., (2012), Effect of Relative Humidity Coupled With Air Gap on Heat Transfer of Flame-Resistant Fabrics Exposed to Flash Fires, Textile Research Journal, 82(12), 1235-1243.
  • Chitrphiromsri, P., ve Kuznetsov, A. V., (2005). Modeling Heat and Moisture Transport in Firefighter Protective Clothing during Flash Fire Exposure, Heat and Mass Transfer, 41(3), 206-215
  • Song, G., Chitrphiromsri, P., ve Ding, D., (2008), Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing under Flash Fire Conditions, International Journal of Occupational Safety and Ergonomics, 14(1), 89-106.
  • Ghazy, A., ve Bergstrom, D. J., (2010), Numerical Simulation of Transient Heat Transfer in a Protective Clothing System during a Flash Fire Exposure, Numerical Heat Transfer, Part A: Applications, 58(9), 702-724.
  • Lee, Y. M., ve Barker, R. L., (1986), Effect of Moisture on the Thermal Protective Performance of Heat-Resistant Fabrics, Journal of Fire Sciences, 4(5), 315-331.
  • Keiser, C., Becker, C., ve Rossi, R. M., (2008), Moisture Transport and Absorption in Multilayer Protective Clothing Fabrics, Textile Research Journal, 78(7), 604-613.
  • Lu, Y., Li, J., Li, X., ve Song, G., (2013), The Effect of Air Gaps in Moist Protective Clothing on Protection from Heat and Flame, Journal of Fire Sciences, 31(2), 99-111.
  • He, H., Yu, Z. C., ve Song, G., (2016), The Effect of Moisture and Air Gap on the Thermal Protective Performance of Fabric Assemblies Used by Wildland Firefighters, The Journal of The Textile Institute, 107(8), 1030-1036.
  • Ghazy, A., (2014). Influence of Thermal Shrinkage on Protective Clothing Performance during Fire Exposure: Numerical Investigation, Mechanical Engineering Research, 4(2), 1-15.
  • Li, X., Lu, Y., Zhai, L., Wang, M., Li, J., ve Wang, Y., (2015), Analyzing Thermal Shrinkage of Fire-Protective Clothing Exposed to Flash Fire, Fire Technology, 51(1), 195-211.
  • Song, G., Cao, W., ve Gholamreza, F., (2011), Analyzing Stored Thermal Energy and Thermal Protective Performance of Clothing, Textile Research Journal, 81(11), 1124-1138.
  • Mah, T., ve Song, G., (2010b), Investigation of the Contribution of Garment Design to Thermal Protection. Part 2: Instrumented Female Mannequin Flash-Fire Evaluation System. Textile Research Journal, 80(14), 1473-1487.
  • Fu, M., Weng, W., ve Yuan, H., (2014). Effects of Multiple Air Gaps on the Thermal Performance of Firefighter Protective Clothing under Low-Level Heat Exposure, Textile Research Journal, 84(9), 968-978.
  • Xin, L., Li, X., ve Li, J., (2014), A New Approach to Evaluate the Effect of Body Motion on Heat Transfer of Thermal Protective Clothing during Flash Fire Exposure, Fibers and Polymers, 15(10), 2225-2231.
  • Ghazy, A., ve Bergstrom, D. J., (2013). Numerical Simulation of the Influence of Fabric’s Motion on Protective Clothing Performance during Flash Fire Exposure, Heat and Mass Transfer, 49(6), 775-788.

Effect of Air Gaps on Protective Performance of Thermal Protective Clothing

Year 2016, Volume: 23 Issue: 104, 277 - 287, 29.12.2016
https://doi.org/10.7216/1300759920162310405

Abstract

Personal protective equipment is designed for workers in order to protect from exposure to hazards in their workplaces that influence their health and safety negatively. The protective performance of the heat and flame resistant protective clothing, which is one of the personal protective equipment classified according to the type of hazards, is affected by the shape, size and distribution of air gaps between the skin and the garment. In this paper, firstly, the factors affecting air gaps and the heat transfer mechanism through air gaps are examined; then the thermal protective performance of protective clothing is explained, and the effects of air gaps on the performance of these clothing are evaluated considering the findings of previous studies. 

References

  • Rossi, R. M., (2005), Interactions between Protection and Thermal Comfort, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge.
  • Ghazy, A., ve Bergstrom, D. J., (2011). Influence of The Air Gap Between Protective Clothing and Skin on Clothing Performance During Flash Fire Exposure, Heat And Mass Transfer, 47(10), 1275-1288.
  • Wang, Y. Y., Lu, Y. H., Li, J., ve Pan, J. H., (2012), Effects of Air Gap Entrapped in Multilayer Fabrics and Moisture on Thermal Protective Performance, Fibers and Polymers, 13(5), 647-652.
  • Daanen, H., Hatcher, K., ve Havenith, G., (2005), Determination of Clothing Microclimate Volume, Elsevier Ergonomics Book Series, 3, 361-365.
  • Daannen, H., ve Reffeltrath, P., (2007), Function, Fit and Sizing, Sizing in Clothing (ed. Ashdown, S.), Woodhead Publishing Limited, Cambridge.
  • Zhang, Z., ve Li, J., (2011), Volume of Air Gaps under Clothing and Its Related Thermal Effects, Journal of Fiber Bioengineering and Informatics, 4(2), 137-144.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015). Air Gap Thickness and Contact Area in Undershirts with Various Moisture Contents: Influence of Garment Fit, Fabric Structure and Fiber Composition, Textile Research Journal, 85(20), 2196-2207.
  • Li, X., Wang, Y., ve Lu, Y., (2011), Effects of Body Postures on Clothing Air Gap in Protective Clothing, Journal of Fiber Bioengineering & Informatics, 4(3), 277-283.
  • Lotens, W. A., ve Havenith, G., (1991), Calculation of Clothing Insulation and Vapour Resistance, Ergonomics, 34(2), 233-254.
  • Song, G., Barker, R. L., Hamouda, H., Kuznetsov, A. V., Chitrphiromsri, P., ve Grimes, R. V., (2004), Modeling the Thermal Protective Performance of Heat Resistant Garments in Flash Fire Exposures, Textile Research Journal, 74(12), 1033-1040.
  • Zhang, Z., Wang, Y., ve Li, J., (2010), Mathematical Simulation and Experimental Measurement of Clothing Surface Temperature under Different Sized Air Gaps, Fibers and Polymers, 11(6), 911-916.
  • Mah, T., ve Song, G., (2010a), Investigation of the Contribution of Garment Design to Thermal Protection. Part 1: Characterizing Air Gaps Using Three-Dimensional Body Scanning for Women’s Protective Clothing. Textile Research Journal, 80(13), 1317-1329.
  • Zhang, Z. H., Wang, Y., ve Li, J., (2011), Model for Predicting the Effect of an Air Gap on The Heat Transfer of a Clothed Human Body, Fibres & Textiles in Eastern Europe, 4, 105-110.
  • Psikuta, A., Frackiewicz-Kaczmarek, J., Frydrych, I. K., ve Rossi, R. M., (2012). Quantitative Evaluation of Air Gap Thickness and Contact Area between Body and Garment, Textile Research Journal, 82(14), 1405-1413.
  • Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2016), The Effect of Body Postures on the Distribution of Air Gap Thickness and Contact Area, International Journal of Biometeorology, doi:10.1007/s00484-016-1217-9
  • Yu, M., Wang, Y., Wang, Y., ve Li, J., (2013), Correlation between Clothing Air Gap Space and Fabric Mechanical Properties, Journal of the Textile Institute, 104(1), 67-77.
  • Song, G., (2007), Clothing Air Gap Layers and Thermal Protective Performance in Single Layer Garment, Journal of Industrial Textiles, 36(3), 193-205.
  • Zhang, Z., Li, J., ve Wang, Y., (2015), Improving Garment Thermal Insulation Property By Combining Two Non-Contact Measuring Tools, Indian Journal of Fibre & Textile Research, 40(4), 392-398.
  • Mert, E., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015), Effect of Heterogenous and Homogenous Air Gaps on Dry Heat Loss through the Garment. International Journal Of Biometeorology, 59(11), 1701-1710.
  • Kim, I. Y., Lee, C., Li, P., Corner, B. D., ve Paquette, S., (2002), Investigation of Air Gaps Entrapped in Protective Clothing Systems, Fire and Materials, 26(3), 121-126.
  • Li, J., Zhang, Z., ve Wang, Y., (2013), The Relationship between Air Gap Sizes and Clothing Heat Transfer Performance, The Journal of The Textile Institute, 104(12), 1327-1336.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M. A., ve Rossi, R. M., (2015b). Effect of Garment Properties on Air Gap Thickness and The Contact Area Distribution, Textile Research Journal, 85(18), 1907-1918.
  • Parsons, K. C., Havenith, G., Holmer, I., Nilsson, H., ve Malchaire, J., (1999). The Effects of Wind and Human Movement on the Heat and Vapour Transfer Properties of Clothing, Annals of Occupational Hygiene, 43(5), 347-352.
  • Choi, J., Kim, H., Kang, B., Nama, Y., Chung, M. K., ve Jung, H.,(2014), Analysis of Clothing Air Gap in a Protective Suit According to the Body Postures, Journal of Fiber Bioengineering and Informatics, 7(4), 573-581.
  • Voelker, C., Hoffmann, S., Kornadt, O., Arens, E., Zhang, H., ve Huizenga, C. (2009), Heat and Moisture Transfer through Clothing, 11th International IBPSA Conference, Glasgow.
  • Talukdar, P., Das, A., ve Alagurisamy, R., (2016), Heat and Mass Transfer through Thermal Protective Clothing – A Review, International Journal of Thermal Sciences, 106, 32-56.
  • Lee, Y., Hong, K., ve Hong, S. A., (2007), 3D Quantification of Microclimate Volume in Layered Clothing for the Prediction of Clothing Insulation, Applied Ergonomics, 38(3), 349-355.
  • Torvi, D. A., (1996), Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions, Doktora Tezi, Makine Mühendisliği Bölümü, Alberta Üniversitesi, Alberta.
  • Chen, Y. S., Fan, J., Qian, X., ve Zhang, W., (2004), Effect of Garment Fit on Thermal Insulation And Evaporative Resistance, Textile Research Journal, 74(8), 742-748.
  • Horrocks, R., (2005), Thermal (heat and fire) Protection, Textiles for Protection (ed. Scott, R.), Woodhead Publishing Limited, Cambridge.
  • Ömeroğulları, Z., ve Kut, D., (2012), Tekstilde Güç Tutuşurluk, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(1), 27-41.
  • Song, G. W., ve Lu, Y. H., (2013), Flame Resistant Textiles for Structural and Proximity Fire Fighting, Handbook of Fire Resistant Textiles, Woodhead Publishing Limited, Cambridge.
  • Song, G., Paskaluk, S., Sati, R., Crown, E. M., Dale, J. D., ve Ackerman, M., (2010), Thermal Protective Performance of Protective Clothing Used for Low Radiant Heat Protection, Textile Research Journal, 81(3), 311-323.
  • Bulgun, E., ve Yılmaz, M., (2010), İtfaiye Elbiseleri Tasarımında Son Gelişmeler, Tekstil ve Mühendis, 77, 20-28.
  • Behnke, W. P., (1977), Thermal Protective Performance Test for Clothing, Fire Technology, 13(1), 6-12.
  • Lawson, J. R., ve Twilley, W. H., (1999), Development of an Apparatus for Measuring the Thermal Performance of Fire Fighters' Protective Clothing, US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg.
  • Barker, R. L., Guerth-Schacher, C., Grimes, R. V., ve Hamouda, H., (2006), Effects of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing in Low-Level Radiant Heat Exposures, Textile Research Journal, 76(1), 27-31.
  • Sawcyn, C. M., ve Torvi, D. A., (2009), Improving Heat Transfer Models of Air Gaps in Bench Top Tests of Thermal Protective Fabrics, Textile Research Journal, 79(7), 632-644.
  • Su, Y., Wang, Y., ve Li, J., (2016), Evaluation Method for Thermal Protection of Firefighters’ Clothing in High-Temperature and High-Humidity Condition: A Review, International Journal of Clothing Science and Technology, 28(4), 429-448.
  • Wang, M., Li, X., ve Li, J., (2015), Correlation of Bench Scale and Manikin Testing of Fire Protective Clothing with Thermal Shrinkage Effect Considered, Fibers and Polymers, 16(6), 1370-1377.
  • Barker, R. L., (2005), A Review of Gaps and Limitations in Test Methods for First Responder Protective Clothing and Equipment, Final Raporu, National Institute for Occupational Safety and Health.
  • Lee, C., Kim, I. Y., ve Wood, A., (2002), Investigation and Correlation of Manikin and Bench-Scale Fire Testing of Clothing Systems, Fire and Materials, 26(6), 269-278.
  • Li, J., Lu, Y., ve Li, X., (2012), Effect of Relative Humidity Coupled With Air Gap on Heat Transfer of Flame-Resistant Fabrics Exposed to Flash Fires, Textile Research Journal, 82(12), 1235-1243.
  • Chitrphiromsri, P., ve Kuznetsov, A. V., (2005). Modeling Heat and Moisture Transport in Firefighter Protective Clothing during Flash Fire Exposure, Heat and Mass Transfer, 41(3), 206-215
  • Song, G., Chitrphiromsri, P., ve Ding, D., (2008), Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing under Flash Fire Conditions, International Journal of Occupational Safety and Ergonomics, 14(1), 89-106.
  • Ghazy, A., ve Bergstrom, D. J., (2010), Numerical Simulation of Transient Heat Transfer in a Protective Clothing System during a Flash Fire Exposure, Numerical Heat Transfer, Part A: Applications, 58(9), 702-724.
  • Lee, Y. M., ve Barker, R. L., (1986), Effect of Moisture on the Thermal Protective Performance of Heat-Resistant Fabrics, Journal of Fire Sciences, 4(5), 315-331.
  • Keiser, C., Becker, C., ve Rossi, R. M., (2008), Moisture Transport and Absorption in Multilayer Protective Clothing Fabrics, Textile Research Journal, 78(7), 604-613.
  • Lu, Y., Li, J., Li, X., ve Song, G., (2013), The Effect of Air Gaps in Moist Protective Clothing on Protection from Heat and Flame, Journal of Fire Sciences, 31(2), 99-111.
  • He, H., Yu, Z. C., ve Song, G., (2016), The Effect of Moisture and Air Gap on the Thermal Protective Performance of Fabric Assemblies Used by Wildland Firefighters, The Journal of The Textile Institute, 107(8), 1030-1036.
  • Ghazy, A., (2014). Influence of Thermal Shrinkage on Protective Clothing Performance during Fire Exposure: Numerical Investigation, Mechanical Engineering Research, 4(2), 1-15.
  • Li, X., Lu, Y., Zhai, L., Wang, M., Li, J., ve Wang, Y., (2015), Analyzing Thermal Shrinkage of Fire-Protective Clothing Exposed to Flash Fire, Fire Technology, 51(1), 195-211.
  • Song, G., Cao, W., ve Gholamreza, F., (2011), Analyzing Stored Thermal Energy and Thermal Protective Performance of Clothing, Textile Research Journal, 81(11), 1124-1138.
  • Mah, T., ve Song, G., (2010b), Investigation of the Contribution of Garment Design to Thermal Protection. Part 2: Instrumented Female Mannequin Flash-Fire Evaluation System. Textile Research Journal, 80(14), 1473-1487.
  • Fu, M., Weng, W., ve Yuan, H., (2014). Effects of Multiple Air Gaps on the Thermal Performance of Firefighter Protective Clothing under Low-Level Heat Exposure, Textile Research Journal, 84(9), 968-978.
  • Xin, L., Li, X., ve Li, J., (2014), A New Approach to Evaluate the Effect of Body Motion on Heat Transfer of Thermal Protective Clothing during Flash Fire Exposure, Fibers and Polymers, 15(10), 2225-2231.
  • Ghazy, A., ve Bergstrom, D. J., (2013). Numerical Simulation of the Influence of Fabric’s Motion on Protective Clothing Performance during Flash Fire Exposure, Heat and Mass Transfer, 49(6), 775-788.
There are 57 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Hande Gül Atasağun

Publication Date December 29, 2016
Published in Issue Year 2016 Volume: 23 Issue: 104

Cite

APA Atasağun, H. G. (2016). Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi. Tekstil Ve Mühendis, 23(104), 277-287. https://doi.org/10.7216/1300759920162310405
AMA Atasağun HG. Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi. Tekstil ve Mühendis. December 2016;23(104):277-287. doi:10.7216/1300759920162310405
Chicago Atasağun, Hande Gül. “Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi”. Tekstil Ve Mühendis 23, no. 104 (December 2016): 277-87. https://doi.org/10.7216/1300759920162310405.
EndNote Atasağun HG (December 1, 2016) Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi. Tekstil ve Mühendis 23 104 277–287.
IEEE H. G. Atasağun, “Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi”, Tekstil ve Mühendis, vol. 23, no. 104, pp. 277–287, 2016, doi: 10.7216/1300759920162310405.
ISNAD Atasağun, Hande Gül. “Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi”. Tekstil ve Mühendis 23/104 (December 2016), 277-287. https://doi.org/10.7216/1300759920162310405.
JAMA Atasağun HG. Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi. Tekstil ve Mühendis. 2016;23:277–287.
MLA Atasağun, Hande Gül. “Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi”. Tekstil Ve Mühendis, vol. 23, no. 104, 2016, pp. 277-8, doi:10.7216/1300759920162310405.
Vancouver Atasağun HG. Termal Koruyucu Giysilerin Koruma Performansı Üzerinde Hava Boşluklarının Etkisi. Tekstil ve Mühendis. 2016;23(104):277-8.