Research Article
BibTex RIS Cite

Effects of Weft Count and Weft Density on Yarn Crimp% of Unbleached And Bleached 3/1(S) Twill Woven Fabrics

Year 2017, Volume: 24 Issue: 108, 254 - 259, 31.12.2017

Abstract

In this study, the effects of weft yarn count and weft density on crimp% of unbleached and bleached 3/1(S) twill woven fabrics are investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft count and weft density were studied. Crimp% of unbleached and bleached fabrics are calculated by dividing the difference between straightened yarn length and the distance between the ends of the yarn while in the fabric, by the distance between the ends of the yarn while in the fabric as percentage. It is observed that the crimp% of warp and weft yarn in woven fabric is effected by weft count and weft density statistically. Moreover weft and warp crimp% of bleached fabrics have higher values than unbleached fabrics as a result of the change in weft densities after bleaching process. 

References

  • Kovar, R., (2011), Length of the yarn in plain-weave crimp wave, The Journal of The Textile Institute, 102(7):582-597.
  • Haque, Md. M., (2009), Effect of weft parameters on weaving performance and fabric properties, Daffodil International University Journal of Science and Technology, 4(2):62-69.
  • Peirce, F T., (1937), The geometry of cloth structure, The Journal of the Textile Institude, 28:45-96
  • Behera, BK., Militky, J., Mishra, R., Kremenakova, D., (2012), Modeling of woven fabric geometry and properties, Woven Fabrics, Prof. Han-Yong Jeon (Ed.), In Tech, 1-32, ISBN 978-953-51-0607-4.
  • Mertova I, Neckar B, Ishtiaque SM., (2016), New method to measure yarn crimp in woven fabric, Textile Research Journal, 86(10):1084-1096
  • Saiman, M.P., Wahab, M.S., Wahit, M.U., (2014), The Effect of Fabric Weave on the Tensile Strength of Woven Kenaf Reinforced Unsaturated Polyester Composite. In: Ahmad M., Yahya M. (eds) Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014), 25-29, 25 August 2014, Springer, Singapore
  • Hu, J., (2004), Structure and mechanics of woven fabrics, Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Ltd, England
  • Behera, BK., Ishtiaque, SM., Chand, S., (1997), Comfort properties of fabrics woven from ring-,rotor and friction-spun yarns, The Journal of The Textile Institude, 88(3):255-264.
  • Tayyar, A. E., Sari, F., Yağiz, İ., (2011), Gömleklik kumaşlarda yapısal parametrelerin kumaşın aşınma direncine etkileri, Tekstil ve Mühendis, 18(84):23-26.
  • Mishra, S., Majumdar, A., Butola, BS., (2014), Modeling of yarn strength utilization in cotton woven fabrics using multiple linear regression, Journal of Engineered Fibers and Fabrics, 9(2):105-111.
  • Akgun, M., (2015), Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10(2):121-128.
  • Süle, G., (2009), Dokuma kumaşlarda çözgü gerginliği ile kıvrım ilişkisinin teorik analizi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 14(1):127-138.
  • Afroz, F., Siddika, A., (2014), Effect of warp yarn tension on crimp% in woven fabric. Europan Scientific Journal, 10(24):202-207.
  • Siddika, A., Akter, N. N., Saha, K., Islam, Md.M., Islam, M.M., (2015), Effects of yarn count on crimp% and take-up% of 2/1(S) twill woven fabric. Global Journal of Researches In Engineering:1 General Engineering, 15(6):54-59.
  • Maqsood, M., Hussain, T., Nawab, Y., Shaker, K., Umair, M., (2015), Prediction of warp and weft yarn crimp in cotton woven fabrics, The Journal of The Textile Institude, 106(11):1180-1189.
  • Tan, VBC., Shim, VPW., Zeng, X., (2005), Modelling crimp in woven fabrics subjected to ballistic impact, International Journal of Impact Engineering, 32:561-574.
  • Backer, S., (1948), The relationship between the structural geometry of a textile fabric and its physical properties, Textile Research Journal, 18(11), 650-658.
  • Mohamed, MH., Lord, PR., (1973), Comparison of physical properties of fabrics woven from open-end and ring spun yarns, Textile Research Journal, 43(3),154-166.
  • Kullman, RMH., Graham, CO., Ruppenicker, GF., (1981), Air permeability of fabrics made from unique and conventional yarns, Textile Research Journal, 51(12), 781-786.
  • Ajayi, JO., (1992), Effects of dabric structure on frictional properties, Textile Research Journal, 62(2),87-93 . Peled, A., Bentur, A., Yankelevsky, D., (1998), Effects of woven fabric geometry on the bonding performance of cementitious composites. Advanced Cement Based Materials, 7(1), 20-27.
  • Chattopadhyay, R., (2008), Design of apparel fabrics:role of fibre, yarn and fabric parameters on its functional attributes, Journal of Textile Engineering, 54(6):179-190.
  • Bhattacharjee, D., Kothari, VK., (2009), Heat transfer through woven textiles, International Journal of Heat and Mass Transfer, 52, 2155-2160.
  • Akgun, M., (2014), Assessment of the surface roughness of cotton fabrics through different yarn and fabric structural parameters, Fibers and Polymers, 15(2):405-413.
  • Brand, RH., SCRUBY, RE., (1973), Three-dimensional geometry of crimp, Textile Research Journal, 43(9), 544-554.
  • Leaf, GAV., Anandjiwala, RD., (1985), A generalized model of plain woven fabric, Textile Research Journal, 55(2), 92-99.
  • Lomov, SV., Gusakov, AV., Huysmans, G., Prodromou, A., Verpoest, I., (2000), Textile geometry preprocessor for meso-mechanical models of woven composites, Composites Science and Technology, 60:2083-2095.
  • Jeon, BS., Chun, SY., Hong, CJ., (2003), Structural and mechanical properties of woven fabrics employing Peirce’s model, Textile Research Journal, 73(10), 929-933.
  • Behera, BK., Muttagi, SB., (2006), Engineering design of polyester-viscose blended suiting fabrics using radial basis function network:part II-prediction of fabric constructional parameters from its properties, Indian Journal of Fibre&Textile Research, 31:489-495.
  • Başer, G., (2015), Modeling of complex fabric structures by methods of computer simulation. Tekstil ve Mühendis, 22(98):1-16.
  • Özdemir, H., Başer, G., (2009), Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institude, 100(3):282-292.
  • Akgün, M., (2013), The Effect of Fabric Balance and Fabric Cover on Surface Roughness of Polyester Fabrics. Fibers and Polymers, 14(8):1372-1377
  • Akgün, M., Alpay, H.R., Becerir, B., (2012), Bazi Poliester Dokuma Kumaşlarin Çözgü Ve Atki İpliklerinin Dokuma İşlemi Öncesi Ve Sonrasi Reflektans Özelliklerindeki Değişimlerin İncelenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(2):91-104
  • Tabachnick, BG., Fidell, LS., (2014), Using Multivariate Statistics, Pearson Education Limited, Boston.
  • George, D., Mallery, M., (2010). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 update, Allyn & Bacon, Boston

Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi

Year 2017, Volume: 24 Issue: 108, 254 - 259, 31.12.2017

Abstract

Bu çalışmada, dimi 3/1 (S) örgü yapısındaki ham ve ağartılmış dokuma kumaşlarda atkı iplik numarası ve atkı sıklığının kıvrım üzerindeki etkisi araştırılmıştır. Çözgü iplik özelliklerini değiştirmemek kaydıyla (tip, iplik numarası ve çözgü sıklığı), atkı iplik numarası ve atkı sıklığını değiştirmek suretiyle kumaş üretimi gerçekleştirilmiştir. Kıvrım yüzdesi, dokuma makinesi çıkışında ham ve ağartılmış kumaşlarda, kumaştan çıkarılarak ölçülen kıvrımsız gerçek iplik uzunluğu ile kumaş yapısındaki iplik uzunluğu arasındaki farkın, kumaş yapısındaki iplik uzunluğuna yüzdesel oranı olarak hesaplanmıştır. Atkı iplik numarası ve atkı sıklığının, dokuma kumaştaki çözgü ve atkı iplik kıvrımı üzerinde istatistiksel olarak anlamlı etkisinin olduğu gözlenmiştir. Ayrıca, ağartma işleminden sonra atkı sıklıklarında meydana gelen değişikliğin bir sonucu olarak, ağartılmış kumaşların atkı ve çözgü kıvrım yüzdelerinin ağartılmamış kumaşlardan daha yüksek değerlere sahip olduğu görülmüştür. 

References

  • Kovar, R., (2011), Length of the yarn in plain-weave crimp wave, The Journal of The Textile Institute, 102(7):582-597.
  • Haque, Md. M., (2009), Effect of weft parameters on weaving performance and fabric properties, Daffodil International University Journal of Science and Technology, 4(2):62-69.
  • Peirce, F T., (1937), The geometry of cloth structure, The Journal of the Textile Institude, 28:45-96
  • Behera, BK., Militky, J., Mishra, R., Kremenakova, D., (2012), Modeling of woven fabric geometry and properties, Woven Fabrics, Prof. Han-Yong Jeon (Ed.), In Tech, 1-32, ISBN 978-953-51-0607-4.
  • Mertova I, Neckar B, Ishtiaque SM., (2016), New method to measure yarn crimp in woven fabric, Textile Research Journal, 86(10):1084-1096
  • Saiman, M.P., Wahab, M.S., Wahit, M.U., (2014), The Effect of Fabric Weave on the Tensile Strength of Woven Kenaf Reinforced Unsaturated Polyester Composite. In: Ahmad M., Yahya M. (eds) Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014), 25-29, 25 August 2014, Springer, Singapore
  • Hu, J., (2004), Structure and mechanics of woven fabrics, Woodhead Publishing Limited in association with The Textile Institute Woodhead Publishing Ltd, England
  • Behera, BK., Ishtiaque, SM., Chand, S., (1997), Comfort properties of fabrics woven from ring-,rotor and friction-spun yarns, The Journal of The Textile Institude, 88(3):255-264.
  • Tayyar, A. E., Sari, F., Yağiz, İ., (2011), Gömleklik kumaşlarda yapısal parametrelerin kumaşın aşınma direncine etkileri, Tekstil ve Mühendis, 18(84):23-26.
  • Mishra, S., Majumdar, A., Butola, BS., (2014), Modeling of yarn strength utilization in cotton woven fabrics using multiple linear regression, Journal of Engineered Fibers and Fabrics, 9(2):105-111.
  • Akgun, M., (2015), Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10(2):121-128.
  • Süle, G., (2009), Dokuma kumaşlarda çözgü gerginliği ile kıvrım ilişkisinin teorik analizi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 14(1):127-138.
  • Afroz, F., Siddika, A., (2014), Effect of warp yarn tension on crimp% in woven fabric. Europan Scientific Journal, 10(24):202-207.
  • Siddika, A., Akter, N. N., Saha, K., Islam, Md.M., Islam, M.M., (2015), Effects of yarn count on crimp% and take-up% of 2/1(S) twill woven fabric. Global Journal of Researches In Engineering:1 General Engineering, 15(6):54-59.
  • Maqsood, M., Hussain, T., Nawab, Y., Shaker, K., Umair, M., (2015), Prediction of warp and weft yarn crimp in cotton woven fabrics, The Journal of The Textile Institude, 106(11):1180-1189.
  • Tan, VBC., Shim, VPW., Zeng, X., (2005), Modelling crimp in woven fabrics subjected to ballistic impact, International Journal of Impact Engineering, 32:561-574.
  • Backer, S., (1948), The relationship between the structural geometry of a textile fabric and its physical properties, Textile Research Journal, 18(11), 650-658.
  • Mohamed, MH., Lord, PR., (1973), Comparison of physical properties of fabrics woven from open-end and ring spun yarns, Textile Research Journal, 43(3),154-166.
  • Kullman, RMH., Graham, CO., Ruppenicker, GF., (1981), Air permeability of fabrics made from unique and conventional yarns, Textile Research Journal, 51(12), 781-786.
  • Ajayi, JO., (1992), Effects of dabric structure on frictional properties, Textile Research Journal, 62(2),87-93 . Peled, A., Bentur, A., Yankelevsky, D., (1998), Effects of woven fabric geometry on the bonding performance of cementitious composites. Advanced Cement Based Materials, 7(1), 20-27.
  • Chattopadhyay, R., (2008), Design of apparel fabrics:role of fibre, yarn and fabric parameters on its functional attributes, Journal of Textile Engineering, 54(6):179-190.
  • Bhattacharjee, D., Kothari, VK., (2009), Heat transfer through woven textiles, International Journal of Heat and Mass Transfer, 52, 2155-2160.
  • Akgun, M., (2014), Assessment of the surface roughness of cotton fabrics through different yarn and fabric structural parameters, Fibers and Polymers, 15(2):405-413.
  • Brand, RH., SCRUBY, RE., (1973), Three-dimensional geometry of crimp, Textile Research Journal, 43(9), 544-554.
  • Leaf, GAV., Anandjiwala, RD., (1985), A generalized model of plain woven fabric, Textile Research Journal, 55(2), 92-99.
  • Lomov, SV., Gusakov, AV., Huysmans, G., Prodromou, A., Verpoest, I., (2000), Textile geometry preprocessor for meso-mechanical models of woven composites, Composites Science and Technology, 60:2083-2095.
  • Jeon, BS., Chun, SY., Hong, CJ., (2003), Structural and mechanical properties of woven fabrics employing Peirce’s model, Textile Research Journal, 73(10), 929-933.
  • Behera, BK., Muttagi, SB., (2006), Engineering design of polyester-viscose blended suiting fabrics using radial basis function network:part II-prediction of fabric constructional parameters from its properties, Indian Journal of Fibre&Textile Research, 31:489-495.
  • Başer, G., (2015), Modeling of complex fabric structures by methods of computer simulation. Tekstil ve Mühendis, 22(98):1-16.
  • Özdemir, H., Başer, G., (2009), Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institude, 100(3):282-292.
  • Akgün, M., (2013), The Effect of Fabric Balance and Fabric Cover on Surface Roughness of Polyester Fabrics. Fibers and Polymers, 14(8):1372-1377
  • Akgün, M., Alpay, H.R., Becerir, B., (2012), Bazi Poliester Dokuma Kumaşlarin Çözgü Ve Atki İpliklerinin Dokuma İşlemi Öncesi Ve Sonrasi Reflektans Özelliklerindeki Değişimlerin İncelenmesi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 17(2):91-104
  • Tabachnick, BG., Fidell, LS., (2014), Using Multivariate Statistics, Pearson Education Limited, Boston.
  • George, D., Mallery, M., (2010). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 update, Allyn & Bacon, Boston
There are 34 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Deniz Mutlu Ala

Gamze Gülşen Bakıcı This is me

Publication Date December 31, 2017
Published in Issue Year 2017 Volume: 24 Issue: 108

Cite

APA Ala, D. M., & Bakıcı, G. G. (2017). Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi. Tekstil Ve Mühendis, 24(108), 254-259.
AMA Ala DM, Bakıcı GG. Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi. Tekstil ve Mühendis. December 2017;24(108):254-259.
Chicago Ala, Deniz Mutlu, and Gamze Gülşen Bakıcı. “Atkı İplik Numarası Ve Atkı Sıklığının Ham Ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi”. Tekstil Ve Mühendis 24, no. 108 (December 2017): 254-59.
EndNote Ala DM, Bakıcı GG (December 1, 2017) Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi. Tekstil ve Mühendis 24 108 254–259.
IEEE D. M. Ala and G. G. Bakıcı, “Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi”, Tekstil ve Mühendis, vol. 24, no. 108, pp. 254–259, 2017.
ISNAD Ala, Deniz Mutlu - Bakıcı, Gamze Gülşen. “Atkı İplik Numarası Ve Atkı Sıklığının Ham Ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi”. Tekstil ve Mühendis 24/108 (December 2017), 254-259.
JAMA Ala DM, Bakıcı GG. Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi. Tekstil ve Mühendis. 2017;24:254–259.
MLA Ala, Deniz Mutlu and Gamze Gülşen Bakıcı. “Atkı İplik Numarası Ve Atkı Sıklığının Ham Ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi”. Tekstil Ve Mühendis, vol. 24, no. 108, 2017, pp. 254-9.
Vancouver Ala DM, Bakıcı GG. Atkı İplik Numarası ve Atkı Sıklığının Ham ve Ağartılmış Dimi 3/1(S) Dokuma Kumaşlarda İplik Kıvrımına Etkisi. Tekstil ve Mühendis. 2017;24(108):254-9.