Research Article
BibTex RIS Cite

A RESEARCH ON ESTIMATION OF THE WEAVE FABRIC PROPERTIES WITH THE ARTIFICIAL NEURAL NETWORKS

Year 2017, Volume: 27 Issue: 1, 10 - 21, 31.03.2017

Abstract

In this study, a feedforward backpropagation artificial neural network (ANN) software was developed and it was tested with two different fabric group. While the former was consisted of 29 cotton samples produced under different conditions, the latter was consisted of 49 polyester samples produced under the same conditions. Each group is divided into training and control groups. The result values of the control groups produced by the trained neural network were obtained. The results of the linear regression for both groups with the same method were also obtained. While the fabric weight, thickness, warp and weft tensile strength for the cotton samples are being examined, the air and water permeability values for the polyester samples were examined. Artificial neural network values for all samples showed better fit than linear regression values. ANN and linear regression results were produced closer results for the polyester samples produced under controlled conditions. While ANN results on cotton samples produced under uncontrolled conditions showed good agreement, the fit of the linear regression results deteriorated. This study was supported by the BAP unit of Uşak University.

References

  • 1. Halıcı,U.,http://vision1.eee.metu.edu.tr/~halici/543LectureNotes/lecturenotes-pdf/ch1.pdf
  • 2. http://www.akademiyapayzeka.com/DesktopDefault.aspx?tabindex=4&tabid=4
  • 3. Ertuğrul, S., Uçar, N., 2000, “Predicting Bursting Strenght of Cotton Plain Knitted Fabrics Using Intelligent Techniques”, Textile Research Journal, Yıl:70,No:10, 845-851.
  • 4. Uçar, N., Ertuğrul, S., 2007, “Prediction of Fuzz Fibres on Fabric Surface By Using Neural Network and Regression Analysis”, Fibres and Textiles in Eastern Europe, Vol.15, No.2 (61), 58-61.
  • 5. Feng,C., Kuo,J., Lee, C., J., “A Back-Propagation Neural Network for Recognizing Fabric Defects”, Textile Research Journal, 2003; 73; 147
  • 6. Boong, S., J., Bae, J., H.,”Automatic Recognition of Woven Fabric Patterns by an Artificial Neural Network”,Textile Research Journal, 2003/ 73, 645-650
  • 7. Majumdar, P., K., Majumdar, A., “Predicting the Breaking Elongation of Ring Spun Cotton Yarns Using Mathematical, Statistical, and Artificial Neural Network Models”, Textile Research Journal ,2004 /74: 652 -655
  • 8. Lin,J.,”Prediction of Yarn Shrinkage using Neural Nets”, Textile Research Journal, May 2007,vol. 77, no. 5, 336-342
  • 9. Üreyen,M., Gürkan,P.,” Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties. I. Prediction of yarn tensile properties”, Fibers and Polymers,February 2008, Volume 9, Issue 1, pp 87-91
  • 10. Hadizadeh,M., Jeddi, Ali A. A., Tehran, M., A., “The Prediction of Initial Load-extension Behavior of Woven Fabrics Using Artificial Neural Network”, Textile Research Journal, November 1, 2009 79: 1599-1609
  • 11. Türker,E., Şenol, F.,”The Study of Influencing Factors on Water Permeability of Polyester Weave Fabrics”,Tekstil ve Konfeksiyon,Nisan-Haziran 2009,Yıl.19,sayı.2,114-122
  • 12. Balcı,O., Oğulata, R., T., “Prediction of CIELab Values and Color Changing Occurred After Chemical Finishing Applications By Artificial Neural Networks On Dyed Fabrics “,Tekstil ve Konfeksiyon, 1/2009,61-69
  • 13. Rocco F., Maurizio, G.,”Yarn Strength Prediction: A PracticalModel Based on Artificial Neural Networks.”, Advances in Mechanical Engineering, Vol 2010, Article ID 640103, 11 pages
  • 14. Yaman, N., Şenol, M.F. , Gurkan, P., “Applying Artificial Neural Networks to Total Hand Evaluation of Disposable Diapers”, Journal of Engineered Fibers and Fabrics,Volume 6, Issue 1 - 2011
  • 15. Elmas, Ç., 2011, “Yapay Zeka Uygulamaları”,Seçkin Yayıncılık,İstanbul
  • 16. Bahadir,M., Ç., Bahadir,S., K., Kalaoglu,F., “An Artificial Neural Network Model for Prediction of Bursting Strength of Knitted Fabrics”, IMLCS’2012,Phuket (Thailand)
  • 17. Öztemel, E., 2012, “Yapay Sinir Ağları”, Papatya Yayıncılık Eğitim, İstanbul.
  • 18. Yavuz, S., Deveci, M., “İstatistiksel Normalizasyon Tekniklerinin Yapay Sinir Ağının Performansına Etkisi”, Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Sayı: 40, Haziran-Aralık 2012 ss. 167-187
  • 19. Özdemir H., “Artificial Neural Networks and Their Usage in Weaving Technology” Electronic Journal of Textile Technologies”, 2013, 7(1) 51-68
  • 20. Arıkan Kargı V. S.,” A Comparison of Artificial Neural Networks And Multiple Linear Regression Models as in Predictors of Fabric Weft Defects”, Tekstil ve Konfeksiyon 24(3), 2014
  • 21. Utkun, E . "Giyim Konforunun Tahminlenmesinde Yapay Sinir Ağları Sistemlerinin Kullanımına Yönelik Bir Literatür Araştırması". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20 (2015): 272-280
  • 22. Yamini J., Shelly K., Amandeep M.,2015,”Comfort characteristics of textiles - Objective evaluation and prediction by soft computing techniques”, National Conference on Advances in Engineering, Technology & Management, (AETM’15)

DOKUMA KUMAŞ ÖZELLİKLERİNİN YAPAY SİNİR AĞLARI İLE TAHMİN EDİLMESİ ÜZERİNE BİR ARAŞTIRMA

Year 2017, Volume: 27 Issue: 1, 10 - 21, 31.03.2017

Abstract

Bu çalışmada ileri yayılımlı geri beslemeli yapay sinir ağı (YSA) yazılımı geliştirilerek iki farklı kumaş gurubu ile test edilmiştir. Birinci gurup farklı koşullarda üretilmiş 29 pamuklu numuneden, ikinci gurup aynı koşullarda üretilmiş 49 polyester numuneden oluşturulmuştur. Her gurup kendi içinde eğitim ve kontrol guruplarına ayrılmıştır. Eğitilmiş sinir ağı tarafından üretilen kontrol gruplarının sonuç değerleri elde edilmiştir. Aynı yöntemle her iki gurup için lineer regresyon sonuçları da elde edilmiştir. Pamuk numuneler için kumaş ağırlığı, kalınlığı, atkı ve çözgü kopma mukavemeti incelenirken, polyester numuneler için hava ve su geçirgenliği değerleri incelenmiştir. Tüm numunelerde yapay sinir ağı değerleri lineer regresyon değerlerinden daha iyi uyum göstermiştir. Kontrollü şartlar altında üretilen polyester numunelerde YSA ve lineer regresyon sonuçları birbirine daha yakın sonuçlar üretmiştir. Kontrolsüz şartlarda üretilmiş pamuklu numunelerde YSA sonuçları iyi uyum gösterirken regresyon sonuçlarının uyumu kötüleşmiştir. Bu çalışma Uşak Üniversitesi BAP birimi tarafından desteklenmiştir.

References

  • 1. Halıcı,U.,http://vision1.eee.metu.edu.tr/~halici/543LectureNotes/lecturenotes-pdf/ch1.pdf
  • 2. http://www.akademiyapayzeka.com/DesktopDefault.aspx?tabindex=4&tabid=4
  • 3. Ertuğrul, S., Uçar, N., 2000, “Predicting Bursting Strenght of Cotton Plain Knitted Fabrics Using Intelligent Techniques”, Textile Research Journal, Yıl:70,No:10, 845-851.
  • 4. Uçar, N., Ertuğrul, S., 2007, “Prediction of Fuzz Fibres on Fabric Surface By Using Neural Network and Regression Analysis”, Fibres and Textiles in Eastern Europe, Vol.15, No.2 (61), 58-61.
  • 5. Feng,C., Kuo,J., Lee, C., J., “A Back-Propagation Neural Network for Recognizing Fabric Defects”, Textile Research Journal, 2003; 73; 147
  • 6. Boong, S., J., Bae, J., H.,”Automatic Recognition of Woven Fabric Patterns by an Artificial Neural Network”,Textile Research Journal, 2003/ 73, 645-650
  • 7. Majumdar, P., K., Majumdar, A., “Predicting the Breaking Elongation of Ring Spun Cotton Yarns Using Mathematical, Statistical, and Artificial Neural Network Models”, Textile Research Journal ,2004 /74: 652 -655
  • 8. Lin,J.,”Prediction of Yarn Shrinkage using Neural Nets”, Textile Research Journal, May 2007,vol. 77, no. 5, 336-342
  • 9. Üreyen,M., Gürkan,P.,” Comparison of artificial neural network and linear regression models for prediction of ring spun yarn properties. I. Prediction of yarn tensile properties”, Fibers and Polymers,February 2008, Volume 9, Issue 1, pp 87-91
  • 10. Hadizadeh,M., Jeddi, Ali A. A., Tehran, M., A., “The Prediction of Initial Load-extension Behavior of Woven Fabrics Using Artificial Neural Network”, Textile Research Journal, November 1, 2009 79: 1599-1609
  • 11. Türker,E., Şenol, F.,”The Study of Influencing Factors on Water Permeability of Polyester Weave Fabrics”,Tekstil ve Konfeksiyon,Nisan-Haziran 2009,Yıl.19,sayı.2,114-122
  • 12. Balcı,O., Oğulata, R., T., “Prediction of CIELab Values and Color Changing Occurred After Chemical Finishing Applications By Artificial Neural Networks On Dyed Fabrics “,Tekstil ve Konfeksiyon, 1/2009,61-69
  • 13. Rocco F., Maurizio, G.,”Yarn Strength Prediction: A PracticalModel Based on Artificial Neural Networks.”, Advances in Mechanical Engineering, Vol 2010, Article ID 640103, 11 pages
  • 14. Yaman, N., Şenol, M.F. , Gurkan, P., “Applying Artificial Neural Networks to Total Hand Evaluation of Disposable Diapers”, Journal of Engineered Fibers and Fabrics,Volume 6, Issue 1 - 2011
  • 15. Elmas, Ç., 2011, “Yapay Zeka Uygulamaları”,Seçkin Yayıncılık,İstanbul
  • 16. Bahadir,M., Ç., Bahadir,S., K., Kalaoglu,F., “An Artificial Neural Network Model for Prediction of Bursting Strength of Knitted Fabrics”, IMLCS’2012,Phuket (Thailand)
  • 17. Öztemel, E., 2012, “Yapay Sinir Ağları”, Papatya Yayıncılık Eğitim, İstanbul.
  • 18. Yavuz, S., Deveci, M., “İstatistiksel Normalizasyon Tekniklerinin Yapay Sinir Ağının Performansına Etkisi”, Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, Sayı: 40, Haziran-Aralık 2012 ss. 167-187
  • 19. Özdemir H., “Artificial Neural Networks and Their Usage in Weaving Technology” Electronic Journal of Textile Technologies”, 2013, 7(1) 51-68
  • 20. Arıkan Kargı V. S.,” A Comparison of Artificial Neural Networks And Multiple Linear Regression Models as in Predictors of Fabric Weft Defects”, Tekstil ve Konfeksiyon 24(3), 2014
  • 21. Utkun, E . "Giyim Konforunun Tahminlenmesinde Yapay Sinir Ağları Sistemlerinin Kullanımına Yönelik Bir Literatür Araştırması". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 20 (2015): 272-280
  • 22. Yamini J., Shelly K., Amandeep M.,2015,”Comfort characteristics of textiles - Objective evaluation and prediction by soft computing techniques”, National Conference on Advances in Engineering, Technology & Management, (AETM’15)
There are 22 citations in total.

Details

Journal Section Articles
Authors

Erkan Türker

Publication Date March 31, 2017
Submission Date April 13, 2017
Acceptance Date October 27, 2016
Published in Issue Year 2017 Volume: 27 Issue: 1

Cite

APA Türker, E. (2017). A RESEARCH ON ESTIMATION OF THE WEAVE FABRIC PROPERTIES WITH THE ARTIFICIAL NEURAL NETWORKS. Textile and Apparel, 27(1), 10-21.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.