Research Article
BibTex RIS Cite

AN EASY AND ACCURATE METHOD FOR DETERMINING DEGREE OF SUBSTITUTION ON CARBOXYMETHYLATED COTTON FABRIC

Year 2018, Volume: 28 Issue: 2, 118 - 124, 30.06.2018

Abstract

Carboxymethyl cellulose (CMC) is a common cellulose ether used in many industries including food, pharmaceuticals and personal care, chemicals, drilling fluids, paper as well as textile. The degree of substitution (DS) affects final CMC properties primarily, and thus it must be precisely measured before use. There are various methods for determination of DS when CMC is in powder form, however, methods for determination on the fabric are limited to back titration. Conventional titrimetric methods include reactions with a variety of chemicals and timely titration practices whose accuracy depend mainly on high level of expertise of the operator. An easy-to-apply alternative method with high repeatability is thus needed. In this study, a quick method comprising staining with a well-known dyestuff, namely Methylene Blue, followed by short rinsing-drying, and K/S measurement with spectrometer is offered for determination of degree of substitution of CMC. A precisely followed titration procedure is also carried out. It is shown that the results of newly offered method correlates very well with those of titration method. This alternative method is easier to apply, offers visual evidence and dyeing solution can be used again by addition of expended chemicals and dyestuff, if desired.

References

  • 1. Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer-Verlag Berlin Heidelberg 2011, Ed.Kalia, S., Chapter 2: Chemical Functualization of Cellulose Derived from Nonconventional Sources, Varshney, V.K. and Naithani, S., pp.43-60.
  • 2. Feller, R.L., Wilt, M., Evaluation of Cellulose Ethers for Conservation, Research in Conservation and Technical Report Series, 1990, The Getty Conservation Institute, California, USA, ISBN: 0-89236-099-2.
  • 3. Monier, M., Abdel-Latif, D.A., Ji, H.F., Synthesis and application of photo-active carboxymethyl cellulose derivatives, Reactive and Functional Polymers, May 2016, 102(5), pp.137-146.
  • 4. Mansouri, S., Khiari, R., Bettaieb, F., El-Gendy, A.A., Mhenni, F., Synthesis and Characterization of Carboxymethyl Cellulose from Tunisian Vine Stem: Study of Water Absorption and Retention Capacities, Journal of Polymers and the Environment, June 2015, 23(2), pp.190–198.
  • 5. Saputra, A.H., Qadhayna, L., Pitaloka, A.B, Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Water Hyacinth Using Ethanol- Isobutyl Alcohol Mixture as the Solvents, International Journal of Chemical Engineering and Applications, February 2014, 5(1), pp.36-40.
  • 6. Asl, S.A., Mousavi, M., Labbafi, M., Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse, Journal of Food Processing & Technology, August 2017, 8(8), pp.1-6.
  • 7. Chen, W., Zheng, X, Wang, Z., Synthesis of Sodium Carboxymethyl Cellulose Based on Pretreated Corn Stover and Its Characterization, Proceedings of the 2nd International Conference on Environmental Science and Engineering (ESE 2017), Xiamen, China, July 2017, pp.172-177, ISBN: 978-1-60595- 474-5.
  • 8. Ambjörnsson, H.A., Schenzel, K., Germgard, U., Carboxymethyl Cellulose Produced at Different Mercerization Conditions and Characterized by NIR FT Raman Spectroscopy in Combination with Multivariate Analytical Methods, February 2013, BioResources, 8(2), pp.1911-932.
  • 9. Racz, I., Borsa, J., Bodor, G., Crystallinity and Accessibility of Fibrous Carboxymethylcellulose by Pad-Roll Technology, Journal of Applied Polymer Science, December 1996, 62(12), pp.2015-2024.
  • 10. Racz, I., Deak, I., Borsa, J., Fibrous Carboxymethylcellulose by Pad-Roll Technology, Textile Research Journal, June 1995, 65(6), pp.348-354.
  • 11. Bilgen, M., M.Sc. Thesis, Wrinkle Recovery for Cellulosic Fabric by Means of Ionic Crosslinking, North Carolina State University, Raleigh, NC, USA, 2005.
  • 12. Mostafa, K.M., El-Sanabary, A.A., Carboxyl-containing Starch and Hydrolyzed Starch Derivatives as Size Base Materials for Cotton Textiles, Polymer Degradation and Stability, December 1997, 55(2), pp.181-184.
  • 13. Kniewske, R., Kiesewetter, R., Reinhardt, E., Szablikowski, K., Carboxymethyl Cellulose and Its use in Textile Printing, 1994, US Patent 5463036A.
  • 14. Colorants and Auxiliaries, Organic Chemistry and Application Properties, Volume 2-Auxiliaries, Ed. John Shore, January 2002, Society of Dyers and Colourists, Manchester, UK, ISBN: 978-0901956781.
  • 15. Hashem, M., Hauser, P., Smith, B., Wrinkle Recovery for Cellulosic Fabric by Means of Ionic Crosslinking, Textile Research Journal, September 2003, 73(9), pp.762-766.
  • 16. Sahin, U.K., Gursoy, N.C., Hauser P., Smith C.B., Optimization of Ionic Crosslinking Process: An Alternative to Conventional Durable Press Finishing, Textile Research Journal, May 2009, 79(8), pp.744-752.
  • 17. Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R., Sorption of Methylene Blue by Carboxymethyl Cellulose and Reuse Process in a Secondary Sorption, Colloids and Surfaces: Physicochemical and Engineering Aspects, May 2011, 380(1-3), pp.143-151.
  • 18. El-Salmawi, K.M., Abu Zaid, M.M., Ibraheim, S.M., El-Naggar, A.M., Zahran, A.H., Sorption of Dye Wastes by Poly(vinyl alcohol)/Poly(carboxymethyl cellulose) Blend Grafted through a Radiation Method, Journal of Applied Polymer Science, October 2001, 82(1), pp.136-142.
  • 19. Wang, M., Wang, L., Synthesis and Characterization of Carboxymethyl Cellulose/Organic Montmorillonite Nanocomposites and Its Adsorption Behavior for Congo Red Dye, Water Science and Engineering, July 2013, 6(3), pp.272-282.
  • 20. Ramos, L.A., Frollini, E., Heinze, Th., Carboxymethylation of Cellulose in the New Solvent Dimethyl Sulfonium Fluoride, Carbohydrate Polymers, May 2005, 60(2), pp.259-267.
  • 21. Reid, J.D., Daul, G.C., The Partial Carboxymethylation of Cotton to Obtain Swellable Fibers, I, Textile Research Journal, October 1947, 17(10), pp.554- 561.
  • 22. Reid, J.D., Daul, G.C., The Partial Carboxymethylation of Cotton to Obtain Swellable Fibers, II, Textile Research Journal, September 1948, 18(9), pp.551- 556.
  • 23. Hebeish, A., El-Rafie, M.H., El-Aref, A.T., Khalil, M.I., Adbel-Thalouth, I., El-Kashouti, M., Kamel, M.M., Chemical Factors Affecting Soiling and Soil Release from Cotton-Containing Durable Press Fabric. VI. Effect of Introduction of Carboxymethyl Groups in the Cotton Component of Polyester/Cotton Blend, Journal of Applied Polymer Science, October 1982, 27(10), pp.3703-3719.
  • 24. Higazy, A., Hashem, M.M., Abou-Zeid, N.Y., Hebeish, A., Rendering Flax Fibre Dyeable with Basic Dyes via Partial Carboxymethylation, Journal of the Society of Dyers and Colourists, November 1996, 112(11), pp.329-332.
  • 25. Racz, I., Borsa, J., Carboxymethylated Cotton Fabric for Pesticide-Protective Work Clothing, Textile Research Journal, January 1998, 68(1), pp.69-74.
  • 26. Daul, G.C., Reinhardt, R.M., Reid, J.D., Studies on the Partial Carboxymethylation of Cotton, Textile Research Journal, December 1952, 22(12), pp.787- 792.
  • 27. Parikh, D.V., Sachinvala, N.D., Calamari, T.A., Negulescu, I., Carboxymethylated Cotton for Moist Wound Healing, AATCC Review, June 2003, 3(6), pp.15-19.
  • 28. Begum, H.A., Bin-Mahbub., M.K., Effectiveness of Carboxymethyl Cellulose for the Removal of Methylene Blue from Aqueous Solution, Dhaka University Journal of Science, July 2013, 61(2), pp.193-198.
  • 29. Sahin, U.K., Hauser, P.J., Smith, C.B., Gursoy, N.C., Effect of Carboxymethylation Parameters on WRA Performance of Cotton Fabric, 6th AUTEX (Association of Universities for Textiles) World Conference 2006, NCSU, Raleigh, North Carolina, ABD, 11-14 June 2006.
  • 30. Thilarik, K., Pasteka, M., Estimation of Functional Groups and Degree of Substitution in Carboxymethylstarch, Chemical Papers, May 1987, 41(5), pp.703- 708.
  • 31. Eyler, R.W., Klug, E.D., Diephuis, F., Determination of Degree of Substitution of Sodium Carboxymethylcellulose, Analytical Chemistry, January 1947, 19(1), pp.24-27.
  • 32. ASTM, 1995, Designation: D 1439-94, Standard Test Method for Sodium Carboxymethylcellulose, Annual Book of ASTM Standards, Part 21, ASTM, Philadelphia.
  • 33. Kessler, H., Bestimmung der funktionellen Gruppe und des durchschnittlichen Substitutionsgrades von Carboxymethyl-starke, Starch/Starke, October 1985, 37 (10), pp.334-336.
  • 34. Philipp, B., Dautzenberg, H., Linow, K., Kotz, J., Dawydoff, W., Polyelectrolyte complexes-recent developments and open problems, Progress in Polymer Science, January 1989, 14(1), pp.91–172.
  • 35. Wassmer, K.H., Schroeder, U., Horn, D., Characterization and Detection of Polyanions by Direct Polyelectrolyte Titration, Macromolecular Chemistry and Physics, March 1991, 192(3), pp.553-565.
  • 36. Heinze, T., Koschella, A., Carboxymethyl Ethers of Cellulose and Starch – A Review, Macromolecular Symposia, Special Issue: Cellulose and Cellulose Derivatives, March 2005, 223(1), pp.13-40.
  • 37. Aggeryd, I., Olin, A., Determination of the Degree of Substitution of Sodium Carboxymethylcellulose by Potentiometric Titration and Use of the Extended Henderson-Hasselbalch Equation and the Simplex Method for the Evaluation, Talanta, August 1985, 32 (8Pt1), pp.645-649.
  • 38. Oudhoff, K.A., Buijtenhuijs, F.A., Wijnen, P.H., Schoenmakers, P.J., Kok, W.T., Determination of the Degree of Substitution and its Distribution of Carboxymethylcelluloses by Capillary Zone Electrophoresis, Carbohydrate Research, 2004 Aug 2, 339(11), pp.1917-1924.
  • 39. Kennedy, J.F, Melo, E.H.M., Crescenzi, V., Dentini, M., Matricardi, P., A Rapid Quantitative Determination of Pectin and Carboxymethyl Cellulose in Solution using Poly(hexamethylenebiguanidinium chloride), Carbohydrate Polymers, July 1992, 17(3), pp.199-203.
  • 40. AATCC 79-2014, Standard Test Method for Absorbency of Textiles, American Association of Textile Chemists and Colorists, 2014.
  • 41. AATCC Test Method 144-2012. Alkali in Wet Processes Textiles: Total, American Association of Textile Chemists and Colorists, 2014.

KARBOKSİMETİLLENMİŞ PAMUKLU KUMAŞLARDA SUBSTİTÜSYON DERECESİNİ TESPİT ETMEK İÇİN KOLAY VE HASSAS BİR YÖNTEM

Year 2018, Volume: 28 Issue: 2, 118 - 124, 30.06.2018

Abstract

Karboksimetil selüloz (CMC), gıda, farmasötik ve kişisel bakım, kimyasal, sondaj sıvıları, kâğıt ve tekstil gibi pek çok endüstride kullanılan yaygın bir selüloz eteridir. Sübstitüsyon derecesi (DS) karboksimetil selülozun nihai özelliklerini etkileyen en önemli faktördür ve bu nedenle kullanım öncesi hassas şekilde ölçülmelidir. Karboksimetil selüloz toz halde olduğunda sübstitüsyon derecesini tespit etmek için kullanılan pek çok yöntem mevcuttur, ancak kumaş üzerinde tespit ters titrasyon ile sınırlıdır. Konvansiyonel titrasyon esaslı yöntemler pek çok kimyasalın kullanılması ve uzun süren titrasyon işlemleri gerektirmektedir ve bu yöntemle elde edilen sonuçların doğruluğu için işlemi yapan operatörün yüksek seviyede tecrübeli olmasına gerek duyulmaktadır. Bu nedenle, yüksek tekrarlanabilirliğe sahip ve uygulanması kolay alternatif yönteme ihtiyaç duyulmaktadır. Bu çalışmada, karboksimetil selülozun sübstitüsyon derecesinin tespiti için Metilen Mavisi isimli iyi bilinen bir boyarmadde ile lekeleme, kısa süreli durulama ve kurutmanın ardından spektrofotometre ile K/S değerinin tespitini içeren hızlı bir yöntem önerilmektedir. Hassasça yürütülen bir titrasyon prosedürü de çalışılmıştır. Yeni önerilen yöntemle elde edilen sonuçların titrasyon yöntemiyle elde edilenlerle yüksek korelasyona sahip olduğu gösterilmiştir. Titrasyon ile kıyaslandığında, bu alternatif yöntemin uygulanması daha kolaydır, görsel kanıt sunmaktadır ve istendiği takdirde harcanan kimyasallar ve boyarmadde ilave edilerek boyama çözeltisinin tekrar kullanımı mümkündür.

References

  • 1. Cellulose Fibers: Bio- and Nano-Polymer Composites, Springer-Verlag Berlin Heidelberg 2011, Ed.Kalia, S., Chapter 2: Chemical Functualization of Cellulose Derived from Nonconventional Sources, Varshney, V.K. and Naithani, S., pp.43-60.
  • 2. Feller, R.L., Wilt, M., Evaluation of Cellulose Ethers for Conservation, Research in Conservation and Technical Report Series, 1990, The Getty Conservation Institute, California, USA, ISBN: 0-89236-099-2.
  • 3. Monier, M., Abdel-Latif, D.A., Ji, H.F., Synthesis and application of photo-active carboxymethyl cellulose derivatives, Reactive and Functional Polymers, May 2016, 102(5), pp.137-146.
  • 4. Mansouri, S., Khiari, R., Bettaieb, F., El-Gendy, A.A., Mhenni, F., Synthesis and Characterization of Carboxymethyl Cellulose from Tunisian Vine Stem: Study of Water Absorption and Retention Capacities, Journal of Polymers and the Environment, June 2015, 23(2), pp.190–198.
  • 5. Saputra, A.H., Qadhayna, L., Pitaloka, A.B, Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Water Hyacinth Using Ethanol- Isobutyl Alcohol Mixture as the Solvents, International Journal of Chemical Engineering and Applications, February 2014, 5(1), pp.36-40.
  • 6. Asl, S.A., Mousavi, M., Labbafi, M., Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse, Journal of Food Processing & Technology, August 2017, 8(8), pp.1-6.
  • 7. Chen, W., Zheng, X, Wang, Z., Synthesis of Sodium Carboxymethyl Cellulose Based on Pretreated Corn Stover and Its Characterization, Proceedings of the 2nd International Conference on Environmental Science and Engineering (ESE 2017), Xiamen, China, July 2017, pp.172-177, ISBN: 978-1-60595- 474-5.
  • 8. Ambjörnsson, H.A., Schenzel, K., Germgard, U., Carboxymethyl Cellulose Produced at Different Mercerization Conditions and Characterized by NIR FT Raman Spectroscopy in Combination with Multivariate Analytical Methods, February 2013, BioResources, 8(2), pp.1911-932.
  • 9. Racz, I., Borsa, J., Bodor, G., Crystallinity and Accessibility of Fibrous Carboxymethylcellulose by Pad-Roll Technology, Journal of Applied Polymer Science, December 1996, 62(12), pp.2015-2024.
  • 10. Racz, I., Deak, I., Borsa, J., Fibrous Carboxymethylcellulose by Pad-Roll Technology, Textile Research Journal, June 1995, 65(6), pp.348-354.
  • 11. Bilgen, M., M.Sc. Thesis, Wrinkle Recovery for Cellulosic Fabric by Means of Ionic Crosslinking, North Carolina State University, Raleigh, NC, USA, 2005.
  • 12. Mostafa, K.M., El-Sanabary, A.A., Carboxyl-containing Starch and Hydrolyzed Starch Derivatives as Size Base Materials for Cotton Textiles, Polymer Degradation and Stability, December 1997, 55(2), pp.181-184.
  • 13. Kniewske, R., Kiesewetter, R., Reinhardt, E., Szablikowski, K., Carboxymethyl Cellulose and Its use in Textile Printing, 1994, US Patent 5463036A.
  • 14. Colorants and Auxiliaries, Organic Chemistry and Application Properties, Volume 2-Auxiliaries, Ed. John Shore, January 2002, Society of Dyers and Colourists, Manchester, UK, ISBN: 978-0901956781.
  • 15. Hashem, M., Hauser, P., Smith, B., Wrinkle Recovery for Cellulosic Fabric by Means of Ionic Crosslinking, Textile Research Journal, September 2003, 73(9), pp.762-766.
  • 16. Sahin, U.K., Gursoy, N.C., Hauser P., Smith C.B., Optimization of Ionic Crosslinking Process: An Alternative to Conventional Durable Press Finishing, Textile Research Journal, May 2009, 79(8), pp.744-752.
  • 17. Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R., Sorption of Methylene Blue by Carboxymethyl Cellulose and Reuse Process in a Secondary Sorption, Colloids and Surfaces: Physicochemical and Engineering Aspects, May 2011, 380(1-3), pp.143-151.
  • 18. El-Salmawi, K.M., Abu Zaid, M.M., Ibraheim, S.M., El-Naggar, A.M., Zahran, A.H., Sorption of Dye Wastes by Poly(vinyl alcohol)/Poly(carboxymethyl cellulose) Blend Grafted through a Radiation Method, Journal of Applied Polymer Science, October 2001, 82(1), pp.136-142.
  • 19. Wang, M., Wang, L., Synthesis and Characterization of Carboxymethyl Cellulose/Organic Montmorillonite Nanocomposites and Its Adsorption Behavior for Congo Red Dye, Water Science and Engineering, July 2013, 6(3), pp.272-282.
  • 20. Ramos, L.A., Frollini, E., Heinze, Th., Carboxymethylation of Cellulose in the New Solvent Dimethyl Sulfonium Fluoride, Carbohydrate Polymers, May 2005, 60(2), pp.259-267.
  • 21. Reid, J.D., Daul, G.C., The Partial Carboxymethylation of Cotton to Obtain Swellable Fibers, I, Textile Research Journal, October 1947, 17(10), pp.554- 561.
  • 22. Reid, J.D., Daul, G.C., The Partial Carboxymethylation of Cotton to Obtain Swellable Fibers, II, Textile Research Journal, September 1948, 18(9), pp.551- 556.
  • 23. Hebeish, A., El-Rafie, M.H., El-Aref, A.T., Khalil, M.I., Adbel-Thalouth, I., El-Kashouti, M., Kamel, M.M., Chemical Factors Affecting Soiling and Soil Release from Cotton-Containing Durable Press Fabric. VI. Effect of Introduction of Carboxymethyl Groups in the Cotton Component of Polyester/Cotton Blend, Journal of Applied Polymer Science, October 1982, 27(10), pp.3703-3719.
  • 24. Higazy, A., Hashem, M.M., Abou-Zeid, N.Y., Hebeish, A., Rendering Flax Fibre Dyeable with Basic Dyes via Partial Carboxymethylation, Journal of the Society of Dyers and Colourists, November 1996, 112(11), pp.329-332.
  • 25. Racz, I., Borsa, J., Carboxymethylated Cotton Fabric for Pesticide-Protective Work Clothing, Textile Research Journal, January 1998, 68(1), pp.69-74.
  • 26. Daul, G.C., Reinhardt, R.M., Reid, J.D., Studies on the Partial Carboxymethylation of Cotton, Textile Research Journal, December 1952, 22(12), pp.787- 792.
  • 27. Parikh, D.V., Sachinvala, N.D., Calamari, T.A., Negulescu, I., Carboxymethylated Cotton for Moist Wound Healing, AATCC Review, June 2003, 3(6), pp.15-19.
  • 28. Begum, H.A., Bin-Mahbub., M.K., Effectiveness of Carboxymethyl Cellulose for the Removal of Methylene Blue from Aqueous Solution, Dhaka University Journal of Science, July 2013, 61(2), pp.193-198.
  • 29. Sahin, U.K., Hauser, P.J., Smith, C.B., Gursoy, N.C., Effect of Carboxymethylation Parameters on WRA Performance of Cotton Fabric, 6th AUTEX (Association of Universities for Textiles) World Conference 2006, NCSU, Raleigh, North Carolina, ABD, 11-14 June 2006.
  • 30. Thilarik, K., Pasteka, M., Estimation of Functional Groups and Degree of Substitution in Carboxymethylstarch, Chemical Papers, May 1987, 41(5), pp.703- 708.
  • 31. Eyler, R.W., Klug, E.D., Diephuis, F., Determination of Degree of Substitution of Sodium Carboxymethylcellulose, Analytical Chemistry, January 1947, 19(1), pp.24-27.
  • 32. ASTM, 1995, Designation: D 1439-94, Standard Test Method for Sodium Carboxymethylcellulose, Annual Book of ASTM Standards, Part 21, ASTM, Philadelphia.
  • 33. Kessler, H., Bestimmung der funktionellen Gruppe und des durchschnittlichen Substitutionsgrades von Carboxymethyl-starke, Starch/Starke, October 1985, 37 (10), pp.334-336.
  • 34. Philipp, B., Dautzenberg, H., Linow, K., Kotz, J., Dawydoff, W., Polyelectrolyte complexes-recent developments and open problems, Progress in Polymer Science, January 1989, 14(1), pp.91–172.
  • 35. Wassmer, K.H., Schroeder, U., Horn, D., Characterization and Detection of Polyanions by Direct Polyelectrolyte Titration, Macromolecular Chemistry and Physics, March 1991, 192(3), pp.553-565.
  • 36. Heinze, T., Koschella, A., Carboxymethyl Ethers of Cellulose and Starch – A Review, Macromolecular Symposia, Special Issue: Cellulose and Cellulose Derivatives, March 2005, 223(1), pp.13-40.
  • 37. Aggeryd, I., Olin, A., Determination of the Degree of Substitution of Sodium Carboxymethylcellulose by Potentiometric Titration and Use of the Extended Henderson-Hasselbalch Equation and the Simplex Method for the Evaluation, Talanta, August 1985, 32 (8Pt1), pp.645-649.
  • 38. Oudhoff, K.A., Buijtenhuijs, F.A., Wijnen, P.H., Schoenmakers, P.J., Kok, W.T., Determination of the Degree of Substitution and its Distribution of Carboxymethylcelluloses by Capillary Zone Electrophoresis, Carbohydrate Research, 2004 Aug 2, 339(11), pp.1917-1924.
  • 39. Kennedy, J.F, Melo, E.H.M., Crescenzi, V., Dentini, M., Matricardi, P., A Rapid Quantitative Determination of Pectin and Carboxymethyl Cellulose in Solution using Poly(hexamethylenebiguanidinium chloride), Carbohydrate Polymers, July 1992, 17(3), pp.199-203.
  • 40. AATCC 79-2014, Standard Test Method for Absorbency of Textiles, American Association of Textile Chemists and Colorists, 2014.
  • 41. AATCC Test Method 144-2012. Alkali in Wet Processes Textiles: Total, American Association of Textile Chemists and Colorists, 2014.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Umut Kivanc Sahın

Publication Date June 30, 2018
Submission Date January 15, 2018
Acceptance Date April 20, 2018
Published in Issue Year 2018 Volume: 28 Issue: 2

Cite

APA Sahın, U. K. (2018). AN EASY AND ACCURATE METHOD FOR DETERMINING DEGREE OF SUBSTITUTION ON CARBOXYMETHYLATED COTTON FABRIC. Textile and Apparel, 28(2), 118-124.

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.