Year 2020,
Volume: 30 Issue: 2, 83 - 91, 28.06.2020
Halil İbrahim Çelik
,
Elif Gültekin
Serkan Nohut
References
- S. Sayeb, S., Hassen M., & Sakli. (2010). Study of some nonwoven parameters influence on the absorption kinetics of liquid. Open Textile Journal, (3), 1-5.
- Çelikten, E., Satıl E.A., Nohut S., & Elma K.E. (2018, 10). Development of Latex-Bonded Airlaid (LBAL) Nonwoven Fabric with High Wet Strength and Softness. Proceeding of 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018), (355) 967-969.
- Irzmańska. E, & Dutkiewicz J. (2015). Preliminary evaluation of airlaid nonwovens with superabsorbent for use in protective footwear: tests involving a thermal foot model and climatic chamber. Fibres & Textiles in Eastern Europe, 6(114), 138-142.
- Bartkowiak. G. (2006). Liquid sorption by nonwovens containing superabsorbent fibers. Fibres and Textiles in Eastern Europe, 14(1), 57.
- Sadikoglu. T. G. (2005). Effect on comfort properties of using superabsorbent fibres in nonwoven interlinings. Fibres & Textiles in Eastern Europe, 3 (51), 54-57.
- EDANA Standard NWSP 010.1.RO (15)
- AATCC Test Method 79-2007
- Das. A, Kothari V. K., Makhija S., & Avyaya K. (2008). Development of high‐absorbent light‐weight sanitary napkin. Journal of applied polymer science, 107(3), 1466-1470.
- Rawal. A, Kameswara R. P., Russell V, & Jeganathan S. (2010). A, Effect of fiber orientation on pore size characteristics of nonwoven structures. Journal of applied polymer science, 118(5), 2668-2673.
- Aksoy. A, & Kaplan S. (2011). Tekstil materyallerinde sıvı transfer mekanizmaları ve ölçüm yöntemleri. Tekstil Teknolojileri Elektronik Dergisi, 5(2), 51-67.
- Nyoni. A. B. (2011). Liquid transport in Nylon 6.6 woven fabrics used for outdoor performance clothing, In Advances in Modern Woven Fabrics Technology (212-240). London. United Kingdom: IntechOpen.
- Birrfelder. P, Dorrestijn M, Roth C, & Rossi R. M. (2013). Effect of fiber count and knit structure on intra-and inter-yarn transport of liquid water. Textile Research Journal, 83(14), 1477-1488.
- Jiang. X. Y, Zhou X. H., Weng M., Zheng J. J., & Jiang Y. X. (2010). Image processing techniques and its application in water transportation through fabrics. Journal of Fiber Bioengineering and Informatics. 3(2), 88-93.
- Raja. D, Koushik C. V., Ramakrishnan G, Subramaniam V, & Ramesh Babu. V. (2012). Measuring in-plane liquid spread in fabric using an embedded image processing technique. Fibres & Textiles in Eastern Europe, 20 4(93), 72-76.
- Morent. R, De Geyter N, Leys C, Vansteenkiste E, De Bock J, & Philips. W. (2006). Measuring the wicking behavior of textiles by the combination of a horizontal wicking experiment and image processing. Review of scientific instruments, 77(9).
- Memariani. F, & Ekhtiari E. (2010). Study on Wicking Measurement in Thin Layer Textiles by Processing Digital Images. International Journal of Engineering, 23 (1), 101-108.
- Raja. D, Ramakrishnan G, Babu V. R., Senthilkumar M, & Sampath M. B. (2014). Comparison of different methods to measure the transverse wicking behavior of fabrics. Journal of Industrial Textiles, 43(3), 366-382.
- Dan-Web. Airlaid Production Lines. Retrieved from http://www.dan-web.com/production-lines.html
- Gonzalez. R. C, In Digital Image Processing Using Matlab-Gonzalez Woods & Eddins, 2004, pp 84-86.
DEVELOPMENT OF AN ALGORITHM TO DETERMINE THE LIQUID SPREADING AREA OF AIRLAID NONWOVEN FABRICS BY IMAGE PROCESSING METHOD
Year 2020,
Volume: 30 Issue: 2, 83 - 91, 28.06.2020
Halil İbrahim Çelik
,
Elif Gültekin
Serkan Nohut
Abstract
Today,
many quality control processes that are controlled by Image Processing (IP)
technique has achieved state-of-the-art performance for all technology field.
The image processing technique, which provides as accurate objective evaluation
as the long and tiring traditional measurement methods, is nowadays widely used
in textile industry. In this study, an alternative image processing technique
has been proposed against the conventional wickability measurement method of
nonwoven fabrics especially used in the hygiene products. An average liquid
spread area ratio of airlaid nonwoven fabric was calculated with the developed
algorithm and the accuracy of the proposed technology was demonstrated.
References
- S. Sayeb, S., Hassen M., & Sakli. (2010). Study of some nonwoven parameters influence on the absorption kinetics of liquid. Open Textile Journal, (3), 1-5.
- Çelikten, E., Satıl E.A., Nohut S., & Elma K.E. (2018, 10). Development of Latex-Bonded Airlaid (LBAL) Nonwoven Fabric with High Wet Strength and Softness. Proceeding of 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018), (355) 967-969.
- Irzmańska. E, & Dutkiewicz J. (2015). Preliminary evaluation of airlaid nonwovens with superabsorbent for use in protective footwear: tests involving a thermal foot model and climatic chamber. Fibres & Textiles in Eastern Europe, 6(114), 138-142.
- Bartkowiak. G. (2006). Liquid sorption by nonwovens containing superabsorbent fibers. Fibres and Textiles in Eastern Europe, 14(1), 57.
- Sadikoglu. T. G. (2005). Effect on comfort properties of using superabsorbent fibres in nonwoven interlinings. Fibres & Textiles in Eastern Europe, 3 (51), 54-57.
- EDANA Standard NWSP 010.1.RO (15)
- AATCC Test Method 79-2007
- Das. A, Kothari V. K., Makhija S., & Avyaya K. (2008). Development of high‐absorbent light‐weight sanitary napkin. Journal of applied polymer science, 107(3), 1466-1470.
- Rawal. A, Kameswara R. P., Russell V, & Jeganathan S. (2010). A, Effect of fiber orientation on pore size characteristics of nonwoven structures. Journal of applied polymer science, 118(5), 2668-2673.
- Aksoy. A, & Kaplan S. (2011). Tekstil materyallerinde sıvı transfer mekanizmaları ve ölçüm yöntemleri. Tekstil Teknolojileri Elektronik Dergisi, 5(2), 51-67.
- Nyoni. A. B. (2011). Liquid transport in Nylon 6.6 woven fabrics used for outdoor performance clothing, In Advances in Modern Woven Fabrics Technology (212-240). London. United Kingdom: IntechOpen.
- Birrfelder. P, Dorrestijn M, Roth C, & Rossi R. M. (2013). Effect of fiber count and knit structure on intra-and inter-yarn transport of liquid water. Textile Research Journal, 83(14), 1477-1488.
- Jiang. X. Y, Zhou X. H., Weng M., Zheng J. J., & Jiang Y. X. (2010). Image processing techniques and its application in water transportation through fabrics. Journal of Fiber Bioengineering and Informatics. 3(2), 88-93.
- Raja. D, Koushik C. V., Ramakrishnan G, Subramaniam V, & Ramesh Babu. V. (2012). Measuring in-plane liquid spread in fabric using an embedded image processing technique. Fibres & Textiles in Eastern Europe, 20 4(93), 72-76.
- Morent. R, De Geyter N, Leys C, Vansteenkiste E, De Bock J, & Philips. W. (2006). Measuring the wicking behavior of textiles by the combination of a horizontal wicking experiment and image processing. Review of scientific instruments, 77(9).
- Memariani. F, & Ekhtiari E. (2010). Study on Wicking Measurement in Thin Layer Textiles by Processing Digital Images. International Journal of Engineering, 23 (1), 101-108.
- Raja. D, Ramakrishnan G, Babu V. R., Senthilkumar M, & Sampath M. B. (2014). Comparison of different methods to measure the transverse wicking behavior of fabrics. Journal of Industrial Textiles, 43(3), 366-382.
- Dan-Web. Airlaid Production Lines. Retrieved from http://www.dan-web.com/production-lines.html
- Gonzalez. R. C, In Digital Image Processing Using Matlab-Gonzalez Woods & Eddins, 2004, pp 84-86.