Research Article
BibTex RIS Cite

Use of Ag-TiO2 and ZnPT Complexes in the Development of Antimicrobial Textiles

Year 2023, Volume: 33 Issue: 2, 114 - 124, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1054744

Abstract

In this study, it was aimed to use the synthesized Ag-TiO2 and commercial ZnPT complexes in the development of antimicrobial textile. As a result of these studies; Ag-TiO2 and ZnPT complex have antimicrobial activity against all test microorganisms including E. cloaceae, E. faecalis, S. typhimirium, S. epidermidis, P. vulgaris, Y. pseudotuberculosis, S. aureus, P. aeruginosa, K. pneumoniae, B. subtilis, E. coli, L. monocytogenes and C. albicans. Optimum conditions of application on cotton textile sample were determined as full bath applying at 50oC for 60 min. and drying at 70oC for 60 min. Optimum concentration values for the application were determined as 4g/L for Ag-TiO2 and 0.01g/L for ZnPT, and these values were shown as bacteriocidal concentration (MBC) by shake-flask method. Furthermore, it has been determined that the antimicrobial activity of textile samples are durable up to 10 repeated washings and are permanent for more than 25 days.

Supporting Institution

DUZCE UNIVERSITY

Project Number

DÜ.BAP-2021.05.01.1183

Thanks

This work was supported by the Research Fund of Duzce University. (Project number DÜ.BAP-2021.05.01.1183).

References

  • 1. Palamutcu S, Keskin R, Devrent N, Sengul M, Hascelik B. 2009. Fonksiyonel Tekstiller II: Antimikrobiyal Tekstiller. Tekstil Teknolojileri Elektronik Dergisi, 3(3):95-108.
  • 2. Akar E, Bulut M. 2013. Bazı tekstil boya bitkilerinin antibakteriyal özellikleri ve aktivitesi için kullanılan test yöntemleri. Teknik Bilimler Dergisi, 3(2):1-6.
  • 3. Schindler WD, Hauser PJ. 2004. Flame-retardant finishes. Chemical Finishing of Textiles, 98-116,
  • 4. Arslan P, Tayyar AE. 2016. Tekstil alanında kullanılan antimikrobiyal maddeler, çalışma mekanizmaları, uygulamaları ve antimikrobiyal etkinlik değerlendirme yöntemleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(3):935-966.
  • 5. Dancer SJ. 2004. How do we assess hospital cleaning A proposal for microbiological standards for surface hygiene in hospitals. Journal of Hospital Infection, 56(1):10-15.
  • 6. Gastmeier P, Stamm-Balderjahn S, Hansen S, Nitzschke Tiemann F, Zuschneid I, Groneberg K, Rüden H. 2005. How outbreaks can contribute to prevention of nosocomial infection: Analysis of 1,022 outbreaks. Infection Control and Hospital Epidemiology, 26(4):357-361.
  • 7. Bilgiç M, Uğur Ş. S. 2015. Antimikrobiyal medikal tekstil ürünleri için oleuropein uygulaması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2):104-110.
  • 8. Sun G. 2016. Antimicrobial textiles. In Antimicrobial textiles, Woodhead Publishing. Elsevier, 1-351.
  • 9. Rayana HB, Dhouib S, Babay A, Chaouch W, Djelassi B, Zouari R. 2021. Study of the antibacterial efficiency of zinc pyrithione treated cotton fabric for shoe insoles: optimizing the zinc content and developing a spectrophotometric method. Journal of Natural Fibers, DOI: 10.1080/15440478.2021.1993491.
  • 10. Akaydin M, Kalkancı M. 2014. Hastane giysisi olarak kullanılan kumaşların antibakteriyel özellikleri üzerine bir araştırma. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 9(1): 20-34.
  • 11. Altuner EE. 2014. Nano kremlerin üretimi. Karaelmas Fen ve Mühendislik Dergisi, 4(1):52-57.
  • 12. Erem AD, Özcan G. 2013. Polymeric nanocomposites and their textile applications. Journal of Textiles and Engineer, 20 (89):36-47.
  • 13. Can C, Körlü A. 2011. Antibakteriyel tekstil üretiminde sıkça kullanılan gümüşün etki mekanizması ve toksisitesi. Tekstil Teknolojileri Elektronik Dergisi, 5(3):54-59.
  • 14. Yuan G, Cranston R. 2008. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1):60-72.
  • 15. Windler L, Height M, Nowack B. 2013. Comparative evaluation of antimicrobials for textile applications. Environment International, 53:62-73.
  • 16. Guthery E, Seal LA, Anderson EL. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects, American Journal of Infection Control, 33(1):15-22.
  • 17. Trüeb RM. 2007. Shampoos: ingredients, efficacy and adverse effects. Journal der Deutschen Dermatologischen Gesellschaft, 5(5):356-365.
  • 18. Egurrola GE, Mazabel AP, Garcia J. 2021. Development and validation of a complexometric and potentiometric titration method for the quantitative determination of zinc pyrithione in shampoo. Journal of Analytical Methods in Chemistry, https://doi.org/10.1155/2021/6661744.
  • 19. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. 2010. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathogens, 6(11): e1001176.
  • 20. Jain AK, Tesema AF. 2017. Development of antimicrobial textiles using zinc pyrithione. Research Journal of Textile and Apparel, 21(3):188-202.
  • 21. Turley PA, Fenn RJ, Ritter JC. 2000. Pyrithiones as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling, 15:175-182.
  • 22. USEPA. 2004. Preliminary risk assessment for zinc pyrithione. United States Environmental Protection Agency.
  • 23. Sokmen BB, Ugras S, Sarikaya HY, Ugras HI, Yanardag R. 2013. Antibacterial, antiurease and antioxidant activities of some arylidene barbiturates. Applied Biochemistry and Biotechnology, 171:2030-2039.
  • 24. Palamutçu S., Sengül M., Devrent N. & Keskin R. 2008. Tekstil Ürünlerinde Antimikrobiyal Etkinlik Belirleme Testleri, VII. Ulusal Ölçümbilim Kongresi, 30 Ekim-1 Kasım 2008, İzmir.
  • 25. Huang W, Leonas K. 2000. Evaluating a one-bath process for imparting antimicrobial activity and repellency to nonwoven surgical gown fabrics. Textile Research Journal, 70(9):774-782.
  • 26. Aly SA, Hashem A, Hussein SS. 2004. Utilization of chitosan citrate as crease-resistant and antimicrobial finishing agent for cotton fabric. Indian Journal of Fibre and Textile Research, 29:218-222.
  • 27. Rawat J, Rana S, Srivastava R, Devesh R, Misra K. 2007. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Material Science and Engineering, 27:540-545.
  • 28. Jeong SH, Yeo SY, Yi SC. 2005. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materıals Science, 40(20):5407–5411.
  • 29. Ranke J, Jastorff B. 2000. Multidimensional risk analysis of antifouling biocides. Environmental Science and Pollution Research, 7:105-114.
  • 30. Yasokawa D, Murata S, Iwahashi Y, Kitagawa E, Kishi K, Okumura Y. Iwahashi H. 2010. DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 109(5):479-486.
  • 31. Park M, Cho YJ, Lee YW, Jung WH. 2018. Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. Scientific Reports, https://doi.org/10.1038/s41598-018-30588-2.
  • 32. Morris CE, Welch CM. 1983. Antimicrobial finishing of cotton with zinc pyrithione. Textile Research Journal, 53(12):725-728.
  • 33. Orhan M. 2007. Pamuk, poliamid ve poliester esaslı tekstil materyallerinde antimikrobiyel bitim uygulamaları üzerine bir araştırma, 150-151.
  • 34. El-Rafie, M. H., Mohamed, A. A., Shaheen, T., Hebeish, A. 2010. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 80(3):779–782.
  • 35. Wasif AI, Laga SK. 2009. Use of nano silver as an antimicrobial agent for cotton. Autex Research Journal, 9(1):5-13.
  • 36. Rajendran R, Balakumar C, Ahammed H, Jayakumar S, Vaideki K, Rajesh E. 2010. Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology, 2(1):202-208.
  • 37. Chung YS, Lee KK, Kim JW. 1998. Durable press and antimicrobial finishing of cotton fabrics with a citric acid and chitosan treatment. Textile Research Journal, 68(10):772-775.
  • 38. Doakhan S, Montazer M, Rashidi A, Moniri R, Moghadam MB. 2013. Influence of sericin/TiO2 nanocomposite on cotton fabric: Part 1. Enhanced antibacterial effect. Carbohydrate Polymers, 94(2):737-748.
  • 39. Yue Y, Behra R, Sigg L, Ferna´ndez Freire P, Pillai S, Schirmer K. 2014. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology, 9:54-63.
  • 40. Brady MT, Evans J, Cuartas J. 1990. Survival and disinfection of parainfluenza viruses on environmental surfaces. American Journal of Infection Control, 18(1):18-23.
  • 41. Perry C, Marshall R, Jones E. 2001. Bacterial contamination of uniforms. Journal of Hospital Infection, 48:238-241.
  • 42. Hochmuth P, Magnuson J, Owens K. 2005. Survival of vancomycin-resistant Enterococcus faecium on acrylic nails, bed linen, and plastic keyboard covers. American Journal of Infection Control, 33(5):32-39.
  • 43. Bureau-Chalot F, Piednoir E, Camus J, Bajolet O. 2004. Microbiologic quality of linen and linen rooms in short-term care units. Journal of Hospital Infection, 56:329-231.
  • 44. Fijan S, Šostar Turk S. 2012. Hospital textiles, are they a possible vehicle for healthcare- associated infections?. International Journal of Environmental Research and Public Health, 9:3330-3343.
  • 45. Gao Y, Cranston R. 2008. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1):60-72.
Year 2023, Volume: 33 Issue: 2, 114 - 124, 30.06.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1054744

Abstract

Project Number

DÜ.BAP-2021.05.01.1183

References

  • 1. Palamutcu S, Keskin R, Devrent N, Sengul M, Hascelik B. 2009. Fonksiyonel Tekstiller II: Antimikrobiyal Tekstiller. Tekstil Teknolojileri Elektronik Dergisi, 3(3):95-108.
  • 2. Akar E, Bulut M. 2013. Bazı tekstil boya bitkilerinin antibakteriyal özellikleri ve aktivitesi için kullanılan test yöntemleri. Teknik Bilimler Dergisi, 3(2):1-6.
  • 3. Schindler WD, Hauser PJ. 2004. Flame-retardant finishes. Chemical Finishing of Textiles, 98-116,
  • 4. Arslan P, Tayyar AE. 2016. Tekstil alanında kullanılan antimikrobiyal maddeler, çalışma mekanizmaları, uygulamaları ve antimikrobiyal etkinlik değerlendirme yöntemleri. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(3):935-966.
  • 5. Dancer SJ. 2004. How do we assess hospital cleaning A proposal for microbiological standards for surface hygiene in hospitals. Journal of Hospital Infection, 56(1):10-15.
  • 6. Gastmeier P, Stamm-Balderjahn S, Hansen S, Nitzschke Tiemann F, Zuschneid I, Groneberg K, Rüden H. 2005. How outbreaks can contribute to prevention of nosocomial infection: Analysis of 1,022 outbreaks. Infection Control and Hospital Epidemiology, 26(4):357-361.
  • 7. Bilgiç M, Uğur Ş. S. 2015. Antimikrobiyal medikal tekstil ürünleri için oleuropein uygulaması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(2):104-110.
  • 8. Sun G. 2016. Antimicrobial textiles. In Antimicrobial textiles, Woodhead Publishing. Elsevier, 1-351.
  • 9. Rayana HB, Dhouib S, Babay A, Chaouch W, Djelassi B, Zouari R. 2021. Study of the antibacterial efficiency of zinc pyrithione treated cotton fabric for shoe insoles: optimizing the zinc content and developing a spectrophotometric method. Journal of Natural Fibers, DOI: 10.1080/15440478.2021.1993491.
  • 10. Akaydin M, Kalkancı M. 2014. Hastane giysisi olarak kullanılan kumaşların antibakteriyel özellikleri üzerine bir araştırma. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 9(1): 20-34.
  • 11. Altuner EE. 2014. Nano kremlerin üretimi. Karaelmas Fen ve Mühendislik Dergisi, 4(1):52-57.
  • 12. Erem AD, Özcan G. 2013. Polymeric nanocomposites and their textile applications. Journal of Textiles and Engineer, 20 (89):36-47.
  • 13. Can C, Körlü A. 2011. Antibakteriyel tekstil üretiminde sıkça kullanılan gümüşün etki mekanizması ve toksisitesi. Tekstil Teknolojileri Elektronik Dergisi, 5(3):54-59.
  • 14. Yuan G, Cranston R. 2008. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1):60-72.
  • 15. Windler L, Height M, Nowack B. 2013. Comparative evaluation of antimicrobials for textile applications. Environment International, 53:62-73.
  • 16. Guthery E, Seal LA, Anderson EL. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: persistence of antimicrobial effects, American Journal of Infection Control, 33(1):15-22.
  • 17. Trüeb RM. 2007. Shampoos: ingredients, efficacy and adverse effects. Journal der Deutschen Dermatologischen Gesellschaft, 5(5):356-365.
  • 18. Egurrola GE, Mazabel AP, Garcia J. 2021. Development and validation of a complexometric and potentiometric titration method for the quantitative determination of zinc pyrithione in shampoo. Journal of Analytical Methods in Chemistry, https://doi.org/10.1155/2021/6661744.
  • 19. te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. 2010. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathogens, 6(11): e1001176.
  • 20. Jain AK, Tesema AF. 2017. Development of antimicrobial textiles using zinc pyrithione. Research Journal of Textile and Apparel, 21(3):188-202.
  • 21. Turley PA, Fenn RJ, Ritter JC. 2000. Pyrithiones as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling, 15:175-182.
  • 22. USEPA. 2004. Preliminary risk assessment for zinc pyrithione. United States Environmental Protection Agency.
  • 23. Sokmen BB, Ugras S, Sarikaya HY, Ugras HI, Yanardag R. 2013. Antibacterial, antiurease and antioxidant activities of some arylidene barbiturates. Applied Biochemistry and Biotechnology, 171:2030-2039.
  • 24. Palamutçu S., Sengül M., Devrent N. & Keskin R. 2008. Tekstil Ürünlerinde Antimikrobiyal Etkinlik Belirleme Testleri, VII. Ulusal Ölçümbilim Kongresi, 30 Ekim-1 Kasım 2008, İzmir.
  • 25. Huang W, Leonas K. 2000. Evaluating a one-bath process for imparting antimicrobial activity and repellency to nonwoven surgical gown fabrics. Textile Research Journal, 70(9):774-782.
  • 26. Aly SA, Hashem A, Hussein SS. 2004. Utilization of chitosan citrate as crease-resistant and antimicrobial finishing agent for cotton fabric. Indian Journal of Fibre and Textile Research, 29:218-222.
  • 27. Rawat J, Rana S, Srivastava R, Devesh R, Misra K. 2007. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Material Science and Engineering, 27:540-545.
  • 28. Jeong SH, Yeo SY, Yi SC. 2005. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materıals Science, 40(20):5407–5411.
  • 29. Ranke J, Jastorff B. 2000. Multidimensional risk analysis of antifouling biocides. Environmental Science and Pollution Research, 7:105-114.
  • 30. Yasokawa D, Murata S, Iwahashi Y, Kitagawa E, Kishi K, Okumura Y. Iwahashi H. 2010. DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 109(5):479-486.
  • 31. Park M, Cho YJ, Lee YW, Jung WH. 2018. Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. Scientific Reports, https://doi.org/10.1038/s41598-018-30588-2.
  • 32. Morris CE, Welch CM. 1983. Antimicrobial finishing of cotton with zinc pyrithione. Textile Research Journal, 53(12):725-728.
  • 33. Orhan M. 2007. Pamuk, poliamid ve poliester esaslı tekstil materyallerinde antimikrobiyel bitim uygulamaları üzerine bir araştırma, 150-151.
  • 34. El-Rafie, M. H., Mohamed, A. A., Shaheen, T., Hebeish, A. 2010. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers, 80(3):779–782.
  • 35. Wasif AI, Laga SK. 2009. Use of nano silver as an antimicrobial agent for cotton. Autex Research Journal, 9(1):5-13.
  • 36. Rajendran R, Balakumar C, Ahammed H, Jayakumar S, Vaideki K, Rajesh E. 2010. Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology, 2(1):202-208.
  • 37. Chung YS, Lee KK, Kim JW. 1998. Durable press and antimicrobial finishing of cotton fabrics with a citric acid and chitosan treatment. Textile Research Journal, 68(10):772-775.
  • 38. Doakhan S, Montazer M, Rashidi A, Moniri R, Moghadam MB. 2013. Influence of sericin/TiO2 nanocomposite on cotton fabric: Part 1. Enhanced antibacterial effect. Carbohydrate Polymers, 94(2):737-748.
  • 39. Yue Y, Behra R, Sigg L, Ferna´ndez Freire P, Pillai S, Schirmer K. 2014. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology, 9:54-63.
  • 40. Brady MT, Evans J, Cuartas J. 1990. Survival and disinfection of parainfluenza viruses on environmental surfaces. American Journal of Infection Control, 18(1):18-23.
  • 41. Perry C, Marshall R, Jones E. 2001. Bacterial contamination of uniforms. Journal of Hospital Infection, 48:238-241.
  • 42. Hochmuth P, Magnuson J, Owens K. 2005. Survival of vancomycin-resistant Enterococcus faecium on acrylic nails, bed linen, and plastic keyboard covers. American Journal of Infection Control, 33(5):32-39.
  • 43. Bureau-Chalot F, Piednoir E, Camus J, Bajolet O. 2004. Microbiologic quality of linen and linen rooms in short-term care units. Journal of Hospital Infection, 56:329-231.
  • 44. Fijan S, Šostar Turk S. 2012. Hospital textiles, are they a possible vehicle for healthcare- associated infections?. International Journal of Environmental Research and Public Health, 9:3330-3343.
  • 45. Gao Y, Cranston R. 2008. Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1):60-72.
There are 45 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Utku Sarı 0000-0001-5274-3162

Serpil Uğraş 0000-0002-1867-5781

Project Number DÜ.BAP-2021.05.01.1183
Early Pub Date July 3, 2023
Publication Date June 30, 2023
Submission Date January 7, 2022
Acceptance Date June 21, 2022
Published in Issue Year 2023 Volume: 33 Issue: 2

Cite

APA Sarı, U., & Uğraş, S. (2023). Use of Ag-TiO2 and ZnPT Complexes in the Development of Antimicrobial Textiles. Textile and Apparel, 33(2), 114-124. https://doi.org/10.32710/tekstilvekonfeksiyon.1054744

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.