Research Article
BibTex RIS Cite

Effect of UV Exposure on the Mechanical Properties of Polyurethane-Coated Fabrics

Year 2024, Volume: 34 Issue: 1, 51 - 68, 31.03.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1168629

Abstract

Polyurethane materials can be used industrially in different ways, some of which can be used as textile materials or as auxiliary materials applied to textile materials. Polyurethane stands out as a widely used polymer for coating textile products used in outdoor applications, because of high stability at low temperature, flexibility, no or very little volatile organic component content, high water resistance, pH stability, excellent solvent resistance, weather resistance, and many other chemical and mechanical properties. In the study, cotton, polyester, and viscose fabrics were coated with polyurethane and aged under UV light to investigate the causes and behaviors of the mechanical degradation effects of UV on the coating material and fiber. The results indicate that the PU coating process improves the mechanical properties of textile materials while being exposed to UV rays deteriorates the fabric structure. The deterioration in the structure of raw and coated fabrics with the effect of UV increased the air permeability. According to the results of DSC analysis, the increase in the time of UV exposure did not create significant differences in terms of thermal degradation temperatures in both cotton and viscose fabrics. The glass transition temperatures (Tg) increase with more exposure to UV rays, and the UV exposure time had a negative effect on the melting temperature (Tm) and enthalpy (ΔH) of coated polyester fabrics.

Supporting Institution

Ege Üniversitesi

Project Number

17-MÜH-052

Thanks

We would like to thank Ege University and Ege University Office of Scientific Research Projects

References

  • [1] A. K. Sen, Coated textiles: principles and applications. Boca Raton-Florida: CRC Press, 2007.
  • [2] I. Clemitson, Polyurethane Casting Primer. Boca Raton-Florida: CRC Press, 2012.
  • [3] N. Arshad, K. M. Zia, F. Jabeen, M. N. Anjum, N. Akram, and M. Zuber, “Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish,” Int. J. Biol. Macromol., vol. 111, pp. 485–492, May 2018.
  • [4] F. Yang and W. Yu, “Study on Mechanical Properties of PU Coated Fabric,” in 2006 International Forum on Textile Science and Engineering for Doctoral Candidates, 2006.
  • [5] J. P. Patel, P. R. Patel, H. K. Mahera, and P. Patel, “Effect of PU And PVC Coating on Different Fabrics for Technical Textile Application,” IJSTE -International J. Sci. Technol. Eng., vol. 1, no. 11, pp. 279–284, 2015.
  • [6] Y. Bulut and V. Sular, “Manufacturing and sewing performance of polyurethane and polyurethane/silicone coated fabrics,” Mater. Manuf. Process., vol. 28, no. 1, pp. 106–111, Dec. 2013.
  • [7] I. Padleckiene and D. Petrulis, “Effect of abrasion on the air permeability & mass loss of breathable-coated fabrics,” Fibres Text. East. Eur., vol. 73, no. 2, pp. 50–54, 2009.
  • [8] J. W. Cho, Y. C. Jung, B. C. Chun, and Y. C. Chung, “Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane,” J. Appl. Polym. Sci., vol. 92, no. 5, pp. 2812–2816, Jun. 2004.
  • [9] M. Jassal, A. Khungar, P. Bajaj, and T. J. M. Sinha, “Waterproof breathable polymeric coatings based on polyurethanes,” J. Ind. Text., vol. 33, no. 4, pp. 269–280, Apr. 2004.
  • [10] S. Mondal and J. L. Hu, “Water vapor permeability of cotton fabrics coated with shape memory polyurethane,” Carbohydr. Polym., vol. 67, no. 3, pp. 282–287, Feb. 2007.
  • [11] S. Kara, S. Yesilpinar, and A. Aksit, “Permeability properties and abrasion resistance of coated polypropylene fabrics,” Vlakna a Text., vol. 25, no. 2, pp. 40–47, 2018.
  • [12] S. Güneşoğlu and M. Yüceer, “A modeling study of micro-cracking processes of polyurethane coated cotton fabrics,” Text. Res. J., vol. 88, no. 24, pp. 2766–2781, Dec. 2018.
  • [13] S. Gunesoglu, E. Cerci, and M. Topalbekiroglu, “The improved breathability of polyurethane coated cotton fabric via micro-cracking,” J. Text. Inst., vol. 108, no. 10, pp. 1815–1821, Oct. 2017.
  • [14] V. Rubeziene, S. Varnaite, J. Baltusnikaite, and I. Padleckiene, “Effects of light exposure on textile durability,” in Understanding and Improving the Durability of Textiles, Elsevier, 2012, pp. 104–125.
  • [15] S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Study of UV aging on the performance characteristics of vegetable oil and palm oil derived isocyanate based polyurethane,” Korean J. Chem. Eng., vol. 34, no. 2, pp. 523–538, 2017.
  • [16] W. Zhang, J. Yao, and S. Wang, “Multifunctional outdoor fabrics with ATO and TiO2 embedded PU coatings,” Pigment Resin Technol., vol. 48, no. 4, pp. 344–352, Jul. 2019.
  • [17] J. H. Li, R. Y. Hong, M. Y. Li, H. Z. Li, Y. Zheng, and J. Ding, “Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings,” Prog. Org. Coatings, vol. 64, no. 4, pp. 504–509, Mar. 2009.
  • [18] D. J. Mills, S. S. Jamali, and K. Paprocka, “Investigation into the effect of nano-silica on the protective properties of polyurethane coatings,” Surf. Coatings Technol., vol. 209, pp. 137–142, Sep. 2012.
  • [19] M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, and M. Atai, “Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating,” Prog. Org. Coatings, vol. 65, no. 2, pp. 222–228, Jun. 2009.
  • [20] T. Van Tran, F. Abedin, A. Usta, and R. Asmatulu, “Polyurethane nanocomposite coating with silanized graphene and hexagonal boron nitride as nanoadditives for improved resistance against ultraviolet degradation,” J. Compos. Mater., vol. 53, no. 10, pp. 1387–1399, May 2019.
  • [21] E. Yousif and R. Haddad, “Photodegradation and photostabilization of polymers, especially polystyrene: Review,” Springerplus, vol. 2, no. 1, 2013.
  • [22] Y. Zhang and M. Zhang, “Aging Properties of Polyvinylidenefluoride-Coated Polyesters Used in Tensioned Membrane Structure: Effect of Loading Protocol and Environment,” Adv. Mater. Sci. Eng., vol. 2017, 2017.
  • [23] R. N. Jana and H. Bhunia, “Accelerated hygrothermal and UV aging of thermoplastic polyurethanes,” High Perform. Polym., vol. 22, no. 1, pp. 3–15, Feb. 2010.
  • [24] S. Houshyar, R. Padhye, R. Nayak, and R. A. Shanks, “Deterioration of polyaramid and polybenzimidazole woven fabrics after ultraviolet irradiation,” J. Appl. Polym. Sci., vol. 133, no. 9, pp. 1–7, 2016.
  • [25] S. K. Pal, V. B. Thakare, G. Singha, and M. K. Verma, “Effect of outdoor exposure and accelerated ageing on textile materials used in aerostat and aircraft arrester barrier nets,” Indian J. Fibre Text. Res., vol. 36, no. 2, pp. 145–151, 2011.
  • [26] N. J. Abbott, T. E. Lannefeld, L. Barish, and R. J. Brysson, “A Study of Tearing in Coated Cotton Fabrics: Part III: The influence of fabric construction,” J. Coat. Fibrous Mater., vol. 1, no. 3, pp. 4–17, 1971.
  • [27] Y. Bulut and V. Sülar, “Effects of process parameters on mechanical properties of coated fabrics,” Int. J. Cloth. Sci. Technol., vol. 23, no. 4, pp. 205–221, Aug. 2011.
  • [28] H. Özdemir and E. Mert, “The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics,” J. Text. Inst., vol. 104, no. 3, pp. 330–338, 2013.
  • [29] W. E. Morton and J. W. S. Hearle, “Tensile properties,” in Physical Properties of Textile Fibres, Woodhead Publishing, 2008, pp. 274–321.
  • [30] M. Zuber, K. M. Zia, I. A. Bhatti, Z. Ali, M. U. Arshad, and M. J. Saif, “Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects,” Int. J. Biol. Macromol., vol. 51, no. 5, pp. 743–748, 2012.
  • [31] G. S. Mengüç, E. Temel, and F. Bozdogan, “Sunlight exposure: The effects on the performance of paragliding fabric,” Ind. Textila, vol. 69, no. 5, pp. 381–389, 2018.
  • [32] U. Eichert, “Residual tensile and tear strength of coated industrial fabrics determined in long-time tests in natural weather conditions,” J. Coat. Fabr., vol. 23, pp. 311–327, Sep. 1994.
  • [33] J. Hu and B. Xin, Structure and mechanics of woven fabrics. 2008.
  • [34] W. A. Scelzo, S. Backer, and M. C. Boyce, “Mechanistic Role of Yarn and Fabric Structure in Determining Tear Resistance of Woven Cloth: Part I: Understanding Tongue Tear,” Text. Res. J., vol. 64, no. 5, pp. 291–304, Jul. 1994.
  • [35] C. M. Krook and K. R. Fox, “Study of the Tongue-Tear Test,” Text. Res. J., vol. 15, no. 11, pp. 389–396, Sep. 1945.
  • [36] I. Jahan, “Effect of Fabric Structure on the Mechanical Properties of Woven Fabrics,” Adv. Res. Text. Eng., vol. 2, no. 2, 2017.
  • [37] S. H. Eryuruk and F. Kalaoğlu, “The effect of weave construction on tear strength of woven fabrics,” Autex Res. J., vol. 15, no. 3, pp. 207–214, 2015.
  • [38] E. Temel, F. Bozdoǧan, and D. Mizmizlioǧlu, “Structural investigation of uv aged tent fabrics,” Tekst. ve Konfeksiyon, vol. 29, no. 3, pp. 246–252, Sep. 2020.
  • [39] A. Çay, S. Vassiliadis, M. Rangoussi, and I. Tarakçioǧlu, “Prediction of the air permeability of woven fabrics using neural networks,” Int. J. Cloth. Sci. Technol., vol. 19, no. 1, pp. 18–35, 2007.
  • [40] E. Pakdel, W. A. Daoud, T. Afrin, L. Sun, and X. Wang, “Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics,” Cellulose, vol. 24, no. 9, pp. 4003–4015, 2017.
  • [41] Ş. S. Uğur, M. Sarııšık, and A. H. Aktaş, “Nano-TiO 2 based multilayer film deposition on cotton fabrics for UV-protection,” Fibers Polym., vol. 12, no. 2, pp. 190–196, 2011.
  • [42] G. Broasca, G. Borcia, N. Dumitrascu, and N. Vrinceanu, “Characterization of ZnO coated polyester fabrics for UV protection,” Appl. Surf. Sci., vol. 279, pp. 272–278, Aug. 2013.
  • [43] G. K. Günaydin, “Effect of coating ratio and weft density on some physical properties of upholstery fabrics,” Ind. Textila, vol. 70, no. 4, pp. 379–385, 2019.
  • [44] M. Havlová, “Air Permeability and Costructional Parameters of Woven Fabrics,” Fibres Text. East. Eur., vol. 98, no. 2, pp. 84–89, 2013.
  • [45] T. Hatakeyama, K. Nakamura, and A. Hatakeyama, “Vaporization of bound water associated with cellulose fibres,” Thermochim. Acta, vol. 352, no. 353, pp. 233–239, 2000.
  • [46] P. Yang and S. Kokot, “Thermal analysis of different cellulosic fabrics,” J. Appl. Polym. Sci., vol. 60, no. 8, pp. 1137–1146, 1996.
  • [47] G. Wypych, Handbook of UV Degradation and Stabilization, 3rd ed. Toronto: ChemTec Publishing, 2020.
  • [48] F. R. Oliveira et al., “Tinctorial behavior of curaua and banana fibers and dyeing wastewater treatment by porous alumina membranes,” Desalin. Water Treat., vol. 57, no. 6, pp. 2750–2758, Feb. 2016.
  • [49] F. Shafizadeh and A. G. W. Bradbury, “Thermal degradation of cellulose in air and nitrogen at low temperatures,” J. Appl. Polym. Sci., vol. 23, no. 5, pp. 1431–1442, Mar. 1979.
  • [50] F. Fan, W. Zhang, and C. Wang, “Covalent bonding and photochromic properties of double-shell polyurethane-chitosan microcapsules crosslinked onto cotton fabric,” Cellulose, vol. 22, no. 2, pp. 1427–1438, 2015.
  • [51] Y. Xu, Z. Lu, and R. Tang, “Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber,” in Journal of Thermal Analysis and Calorimetry, 2007, vol. 89, no. 1, pp. 197–201.
  • [52] P. Giesz, E. Mackiewicz, A. Nejman, G. Celichowski, and M. Cieślak, “Investigation on functionalization of cotton and viscose fabrics with AgNWs,” Cellulose, vol. 24, no. 1, pp. 409–422, 2017.
  • [53] Y. Kong and J. N. Hay, “Multiple melting behaviour of poly(ethylene terephthalate),” Polymer (Guildf)., vol. 44, no. 3, pp. 623–633, Dec. 2002.
  • [54] G. Peng, Q. Li, Y. Yang, H. Wang, and W. Li, “Effects of nano ZnO on strength and stability of unsaturated polyester composites,” Polym. Adv. Technol., no. 2008, pp. 229–236, 2008.
  • [55] P. Samyn, “Tribological properties and thermomechanical analysis of unsaturated polyester fabric composite in oscillating line-contact sliding,” Tribol. Int., vol. 99, pp. 127–139, 2016.
  • [56] A. Boubakri, N. Guermazi, K. Elleuch, and H. F. Ayedi, “Study of UV-aging of thermoplastic polyurethane material,” Mater. Sci. Eng. A, vol. 527, no. 7–8, pp. 1649–1654, 2010.
  • [57] A. A. Younis, “Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric,” Egypt. J. Pet., vol. 25, no. 2, pp. 161–169, 2016.
  • [58] A. Pegoretti and A. Penati, “Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene terephthalate) and its short glass fibre composites,” Polym. Degrad. Stab., vol. 86, no. 2, pp. 233–243, Nov. 2004.
  • [59] M. Wang et al., “Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance,” J. Colloid Interface Sci., vol. 537, pp. 91–100, 2019.
  • [60] N. S. Allen, M. Edge, M. Mohammadian, and K. Jones, “Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate),” Polym. Degrad. Stab., vol. 43, no. 2, pp. 229–237, 1994.
  • [61] A. Nejman, I. Kamińska, P. Giesz, and M. Cieślak, “Thermal stability of polyester fabric with polyacrylic coatings,” Fibres Text. East. Eur., vol. 23, no. 4, pp. 73–82, 2015.
  • [62] Z. Yildiz, A. Gungor, A. Onen, and I. Usta, “Synthesis and characterization of dual-curable epoxyacrylates for polyester cord/rubber applications,” J. Ind. Text., vol. 46, no. 2, pp. 596–610, Aug. 2016.
  • [63] H. Abidi et al., “Accelerated weathering of textile waste nonwovens used as sustainable agricultural mulching,” J. Ind. Text., vol. 50, no. 7, pp. 1079–1110, 2021.
  • [64] H. Zhang et al., “Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber,” Polym. Degrad. Stab., vol. 91, no. 11, pp. 2761–2767, 2006.
  • [65] T. Kijchavengkul, R. Auras, M. Rubino, E. Alvarado, J. R. Camacho Montero, and J. M. Rosales, “Atmospheric and soil degradation of aliphatic-aromatic polyester films,” Polym. Degrad. Stab., vol. 95, no. 2, pp. 99–107, 2010.
  • [66] T. Sang, C. J. Wallis, G. Hill, and G. J. P. Britovsek, “Polyethylene terephthalate degradation under natural and accelerated weathering conditions,” Eur. Polym. J., vol. 136, no. June, p. 109873, 2020.
Year 2024, Volume: 34 Issue: 1, 51 - 68, 31.03.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1168629

Abstract

Project Number

17-MÜH-052

References

  • [1] A. K. Sen, Coated textiles: principles and applications. Boca Raton-Florida: CRC Press, 2007.
  • [2] I. Clemitson, Polyurethane Casting Primer. Boca Raton-Florida: CRC Press, 2012.
  • [3] N. Arshad, K. M. Zia, F. Jabeen, M. N. Anjum, N. Akram, and M. Zuber, “Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish,” Int. J. Biol. Macromol., vol. 111, pp. 485–492, May 2018.
  • [4] F. Yang and W. Yu, “Study on Mechanical Properties of PU Coated Fabric,” in 2006 International Forum on Textile Science and Engineering for Doctoral Candidates, 2006.
  • [5] J. P. Patel, P. R. Patel, H. K. Mahera, and P. Patel, “Effect of PU And PVC Coating on Different Fabrics for Technical Textile Application,” IJSTE -International J. Sci. Technol. Eng., vol. 1, no. 11, pp. 279–284, 2015.
  • [6] Y. Bulut and V. Sular, “Manufacturing and sewing performance of polyurethane and polyurethane/silicone coated fabrics,” Mater. Manuf. Process., vol. 28, no. 1, pp. 106–111, Dec. 2013.
  • [7] I. Padleckiene and D. Petrulis, “Effect of abrasion on the air permeability & mass loss of breathable-coated fabrics,” Fibres Text. East. Eur., vol. 73, no. 2, pp. 50–54, 2009.
  • [8] J. W. Cho, Y. C. Jung, B. C. Chun, and Y. C. Chung, “Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane,” J. Appl. Polym. Sci., vol. 92, no. 5, pp. 2812–2816, Jun. 2004.
  • [9] M. Jassal, A. Khungar, P. Bajaj, and T. J. M. Sinha, “Waterproof breathable polymeric coatings based on polyurethanes,” J. Ind. Text., vol. 33, no. 4, pp. 269–280, Apr. 2004.
  • [10] S. Mondal and J. L. Hu, “Water vapor permeability of cotton fabrics coated with shape memory polyurethane,” Carbohydr. Polym., vol. 67, no. 3, pp. 282–287, Feb. 2007.
  • [11] S. Kara, S. Yesilpinar, and A. Aksit, “Permeability properties and abrasion resistance of coated polypropylene fabrics,” Vlakna a Text., vol. 25, no. 2, pp. 40–47, 2018.
  • [12] S. Güneşoğlu and M. Yüceer, “A modeling study of micro-cracking processes of polyurethane coated cotton fabrics,” Text. Res. J., vol. 88, no. 24, pp. 2766–2781, Dec. 2018.
  • [13] S. Gunesoglu, E. Cerci, and M. Topalbekiroglu, “The improved breathability of polyurethane coated cotton fabric via micro-cracking,” J. Text. Inst., vol. 108, no. 10, pp. 1815–1821, Oct. 2017.
  • [14] V. Rubeziene, S. Varnaite, J. Baltusnikaite, and I. Padleckiene, “Effects of light exposure on textile durability,” in Understanding and Improving the Durability of Textiles, Elsevier, 2012, pp. 104–125.
  • [15] S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, “Study of UV aging on the performance characteristics of vegetable oil and palm oil derived isocyanate based polyurethane,” Korean J. Chem. Eng., vol. 34, no. 2, pp. 523–538, 2017.
  • [16] W. Zhang, J. Yao, and S. Wang, “Multifunctional outdoor fabrics with ATO and TiO2 embedded PU coatings,” Pigment Resin Technol., vol. 48, no. 4, pp. 344–352, Jul. 2019.
  • [17] J. H. Li, R. Y. Hong, M. Y. Li, H. Z. Li, Y. Zheng, and J. Ding, “Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings,” Prog. Org. Coatings, vol. 64, no. 4, pp. 504–509, Mar. 2009.
  • [18] D. J. Mills, S. S. Jamali, and K. Paprocka, “Investigation into the effect of nano-silica on the protective properties of polyurethane coatings,” Surf. Coatings Technol., vol. 209, pp. 137–142, Sep. 2012.
  • [19] M. Sabzi, S. M. Mirabedini, J. Zohuriaan-Mehr, and M. Atai, “Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating,” Prog. Org. Coatings, vol. 65, no. 2, pp. 222–228, Jun. 2009.
  • [20] T. Van Tran, F. Abedin, A. Usta, and R. Asmatulu, “Polyurethane nanocomposite coating with silanized graphene and hexagonal boron nitride as nanoadditives for improved resistance against ultraviolet degradation,” J. Compos. Mater., vol. 53, no. 10, pp. 1387–1399, May 2019.
  • [21] E. Yousif and R. Haddad, “Photodegradation and photostabilization of polymers, especially polystyrene: Review,” Springerplus, vol. 2, no. 1, 2013.
  • [22] Y. Zhang and M. Zhang, “Aging Properties of Polyvinylidenefluoride-Coated Polyesters Used in Tensioned Membrane Structure: Effect of Loading Protocol and Environment,” Adv. Mater. Sci. Eng., vol. 2017, 2017.
  • [23] R. N. Jana and H. Bhunia, “Accelerated hygrothermal and UV aging of thermoplastic polyurethanes,” High Perform. Polym., vol. 22, no. 1, pp. 3–15, Feb. 2010.
  • [24] S. Houshyar, R. Padhye, R. Nayak, and R. A. Shanks, “Deterioration of polyaramid and polybenzimidazole woven fabrics after ultraviolet irradiation,” J. Appl. Polym. Sci., vol. 133, no. 9, pp. 1–7, 2016.
  • [25] S. K. Pal, V. B. Thakare, G. Singha, and M. K. Verma, “Effect of outdoor exposure and accelerated ageing on textile materials used in aerostat and aircraft arrester barrier nets,” Indian J. Fibre Text. Res., vol. 36, no. 2, pp. 145–151, 2011.
  • [26] N. J. Abbott, T. E. Lannefeld, L. Barish, and R. J. Brysson, “A Study of Tearing in Coated Cotton Fabrics: Part III: The influence of fabric construction,” J. Coat. Fibrous Mater., vol. 1, no. 3, pp. 4–17, 1971.
  • [27] Y. Bulut and V. Sülar, “Effects of process parameters on mechanical properties of coated fabrics,” Int. J. Cloth. Sci. Technol., vol. 23, no. 4, pp. 205–221, Aug. 2011.
  • [28] H. Özdemir and E. Mert, “The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics,” J. Text. Inst., vol. 104, no. 3, pp. 330–338, 2013.
  • [29] W. E. Morton and J. W. S. Hearle, “Tensile properties,” in Physical Properties of Textile Fibres, Woodhead Publishing, 2008, pp. 274–321.
  • [30] M. Zuber, K. M. Zia, I. A. Bhatti, Z. Ali, M. U. Arshad, and M. J. Saif, “Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects,” Int. J. Biol. Macromol., vol. 51, no. 5, pp. 743–748, 2012.
  • [31] G. S. Mengüç, E. Temel, and F. Bozdogan, “Sunlight exposure: The effects on the performance of paragliding fabric,” Ind. Textila, vol. 69, no. 5, pp. 381–389, 2018.
  • [32] U. Eichert, “Residual tensile and tear strength of coated industrial fabrics determined in long-time tests in natural weather conditions,” J. Coat. Fabr., vol. 23, pp. 311–327, Sep. 1994.
  • [33] J. Hu and B. Xin, Structure and mechanics of woven fabrics. 2008.
  • [34] W. A. Scelzo, S. Backer, and M. C. Boyce, “Mechanistic Role of Yarn and Fabric Structure in Determining Tear Resistance of Woven Cloth: Part I: Understanding Tongue Tear,” Text. Res. J., vol. 64, no. 5, pp. 291–304, Jul. 1994.
  • [35] C. M. Krook and K. R. Fox, “Study of the Tongue-Tear Test,” Text. Res. J., vol. 15, no. 11, pp. 389–396, Sep. 1945.
  • [36] I. Jahan, “Effect of Fabric Structure on the Mechanical Properties of Woven Fabrics,” Adv. Res. Text. Eng., vol. 2, no. 2, 2017.
  • [37] S. H. Eryuruk and F. Kalaoğlu, “The effect of weave construction on tear strength of woven fabrics,” Autex Res. J., vol. 15, no. 3, pp. 207–214, 2015.
  • [38] E. Temel, F. Bozdoǧan, and D. Mizmizlioǧlu, “Structural investigation of uv aged tent fabrics,” Tekst. ve Konfeksiyon, vol. 29, no. 3, pp. 246–252, Sep. 2020.
  • [39] A. Çay, S. Vassiliadis, M. Rangoussi, and I. Tarakçioǧlu, “Prediction of the air permeability of woven fabrics using neural networks,” Int. J. Cloth. Sci. Technol., vol. 19, no. 1, pp. 18–35, 2007.
  • [40] E. Pakdel, W. A. Daoud, T. Afrin, L. Sun, and X. Wang, “Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics,” Cellulose, vol. 24, no. 9, pp. 4003–4015, 2017.
  • [41] Ş. S. Uğur, M. Sarııšık, and A. H. Aktaş, “Nano-TiO 2 based multilayer film deposition on cotton fabrics for UV-protection,” Fibers Polym., vol. 12, no. 2, pp. 190–196, 2011.
  • [42] G. Broasca, G. Borcia, N. Dumitrascu, and N. Vrinceanu, “Characterization of ZnO coated polyester fabrics for UV protection,” Appl. Surf. Sci., vol. 279, pp. 272–278, Aug. 2013.
  • [43] G. K. Günaydin, “Effect of coating ratio and weft density on some physical properties of upholstery fabrics,” Ind. Textila, vol. 70, no. 4, pp. 379–385, 2019.
  • [44] M. Havlová, “Air Permeability and Costructional Parameters of Woven Fabrics,” Fibres Text. East. Eur., vol. 98, no. 2, pp. 84–89, 2013.
  • [45] T. Hatakeyama, K. Nakamura, and A. Hatakeyama, “Vaporization of bound water associated with cellulose fibres,” Thermochim. Acta, vol. 352, no. 353, pp. 233–239, 2000.
  • [46] P. Yang and S. Kokot, “Thermal analysis of different cellulosic fabrics,” J. Appl. Polym. Sci., vol. 60, no. 8, pp. 1137–1146, 1996.
  • [47] G. Wypych, Handbook of UV Degradation and Stabilization, 3rd ed. Toronto: ChemTec Publishing, 2020.
  • [48] F. R. Oliveira et al., “Tinctorial behavior of curaua and banana fibers and dyeing wastewater treatment by porous alumina membranes,” Desalin. Water Treat., vol. 57, no. 6, pp. 2750–2758, Feb. 2016.
  • [49] F. Shafizadeh and A. G. W. Bradbury, “Thermal degradation of cellulose in air and nitrogen at low temperatures,” J. Appl. Polym. Sci., vol. 23, no. 5, pp. 1431–1442, Mar. 1979.
  • [50] F. Fan, W. Zhang, and C. Wang, “Covalent bonding and photochromic properties of double-shell polyurethane-chitosan microcapsules crosslinked onto cotton fabric,” Cellulose, vol. 22, no. 2, pp. 1427–1438, 2015.
  • [51] Y. Xu, Z. Lu, and R. Tang, “Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber,” in Journal of Thermal Analysis and Calorimetry, 2007, vol. 89, no. 1, pp. 197–201.
  • [52] P. Giesz, E. Mackiewicz, A. Nejman, G. Celichowski, and M. Cieślak, “Investigation on functionalization of cotton and viscose fabrics with AgNWs,” Cellulose, vol. 24, no. 1, pp. 409–422, 2017.
  • [53] Y. Kong and J. N. Hay, “Multiple melting behaviour of poly(ethylene terephthalate),” Polymer (Guildf)., vol. 44, no. 3, pp. 623–633, Dec. 2002.
  • [54] G. Peng, Q. Li, Y. Yang, H. Wang, and W. Li, “Effects of nano ZnO on strength and stability of unsaturated polyester composites,” Polym. Adv. Technol., no. 2008, pp. 229–236, 2008.
  • [55] P. Samyn, “Tribological properties and thermomechanical analysis of unsaturated polyester fabric composite in oscillating line-contact sliding,” Tribol. Int., vol. 99, pp. 127–139, 2016.
  • [56] A. Boubakri, N. Guermazi, K. Elleuch, and H. F. Ayedi, “Study of UV-aging of thermoplastic polyurethane material,” Mater. Sci. Eng. A, vol. 527, no. 7–8, pp. 1649–1654, 2010.
  • [57] A. A. Younis, “Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric,” Egypt. J. Pet., vol. 25, no. 2, pp. 161–169, 2016.
  • [58] A. Pegoretti and A. Penati, “Effects of hygrothermal aging on the molar mass and thermal properties of recycled poly(ethylene terephthalate) and its short glass fibre composites,” Polym. Degrad. Stab., vol. 86, no. 2, pp. 233–243, Nov. 2004.
  • [59] M. Wang et al., “Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance,” J. Colloid Interface Sci., vol. 537, pp. 91–100, 2019.
  • [60] N. S. Allen, M. Edge, M. Mohammadian, and K. Jones, “Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate),” Polym. Degrad. Stab., vol. 43, no. 2, pp. 229–237, 1994.
  • [61] A. Nejman, I. Kamińska, P. Giesz, and M. Cieślak, “Thermal stability of polyester fabric with polyacrylic coatings,” Fibres Text. East. Eur., vol. 23, no. 4, pp. 73–82, 2015.
  • [62] Z. Yildiz, A. Gungor, A. Onen, and I. Usta, “Synthesis and characterization of dual-curable epoxyacrylates for polyester cord/rubber applications,” J. Ind. Text., vol. 46, no. 2, pp. 596–610, Aug. 2016.
  • [63] H. Abidi et al., “Accelerated weathering of textile waste nonwovens used as sustainable agricultural mulching,” J. Ind. Text., vol. 50, no. 7, pp. 1079–1110, 2021.
  • [64] H. Zhang et al., “Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber,” Polym. Degrad. Stab., vol. 91, no. 11, pp. 2761–2767, 2006.
  • [65] T. Kijchavengkul, R. Auras, M. Rubino, E. Alvarado, J. R. Camacho Montero, and J. M. Rosales, “Atmospheric and soil degradation of aliphatic-aromatic polyester films,” Polym. Degrad. Stab., vol. 95, no. 2, pp. 99–107, 2010.
  • [66] T. Sang, C. J. Wallis, G. Hill, and G. J. P. Britovsek, “Polyethylene terephthalate degradation under natural and accelerated weathering conditions,” Eur. Polym. J., vol. 136, no. June, p. 109873, 2020.
There are 66 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Bünyamin Üzümcü 0000-0002-5741-1199

Burak Sarı 0000-0003-3079-6153

Emrah Temel 0000-0002-8520-2618

Project Number 17-MÜH-052
Early Pub Date March 31, 2024
Publication Date March 31, 2024
Submission Date August 30, 2022
Acceptance Date June 16, 2023
Published in Issue Year 2024 Volume: 34 Issue: 1

Cite

APA Üzümcü, B., Sarı, B., & Temel, E. (2024). Effect of UV Exposure on the Mechanical Properties of Polyurethane-Coated Fabrics. Textile and Apparel, 34(1), 51-68. https://doi.org/10.32710/tekstilvekonfeksiyon.1168629

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.