Research Article
BibTex RIS Cite
Year 2024, Volume: 34 Issue: 2, 175 - 184, 30.06.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1394196

Abstract

Project Number

17-MÜH-053

References

  • 1. TÜBA 2022, 10.05, Türkçe Bilim Terimleri Sözlüğü. Retrieve from: http:// tubaterim.gov.tr/
  • 2. Alantar H., 2006. Bir Kültürün Dokunuşu, Bursa:Sentez Yayınları
  • 3. Alantar H., 2022.10.5. Halı Ülkesi Türkiye [pdf]. Retrieve from: Retrieve from: https://ihib.org.tr/yayinlar/hali-ulkesi-turkiye/
  • 4. Küçük Ev Halı Yıkama, 2022, 10.05, Halı Yıkama Teknikleri. http://www.haliyikamakucukev.com/bagcilahaliyikama_haliyikama_carpetclean_haliyikamateknikleri.html
  • 5. Dry Center 2022, 10.05, Halı Yıkama Aşamaları. Retrieve from: https://www.drycenter.com/hali-yikama/hali-yikama-asamalari.html
  • 6. Wang, W., Zhou, Q., Long, H., Zhang, Y., Rather, L. J., and Li, Q. 2021. A Study on Optimization of Irradiation Frequency for Ultrasonic Laundry of Textile. Fibers and Polymers 22(5), 1482-1489
  • 7. Thanu, D. P.R., Zhao M., Han, Z., Keswani, M. 2019. Fundamentals and Applications of Sonic Technology. In R. Kohli and K.L. Mittal (Eds.), Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques. Amsterdam:Elsevier, 1-48
  • 8. Harifi, T., Montazer, M. 2015. A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates. Ultrasonics Sonochemistry 23, 1–10.
  • 9. Li, Q., Ding, C., Yu, H., Hurren, C. J. and Wang, X. 2014. Adapting ultrasonic assisted wool scouring for industrial application. Textile Research Journal 84(11), 1183-1190
  • 10. Wright J. 1968. Patent Number:3,364,627. United States Patent.
  • 11. Williams R. C. 1981. Patent Number:4,307,484. United States Patent.
  • 12. Oh J., Lee H. 2006. US 2006/0236500 A1. United States Patent.
  • 13. Bosses M. D. 2007. US 7.225,505 B2. United States Patent.
  • 14. Bosses M. D. 2007. US 7.228,590 B2. United States Patent
  • 15. Prulett J. S. et al. 2020. US2020/0023414A1. United States Patent.
  • 16. Hortel T. C., Senapati N. 2002. US 6,391,061 B1. United States Patent.
  • 17. Bodet J. et al. 2002. US 2002/0189635 A1. United States Patent.
  • 18. Kitaori N. et al. 2002. US 6,493,289 B2. United States Patent.
  • 19. Hortel T. C., Senapati N. 2003. US 6,589,294 B2. United States Patent.
  • 20. Mah P.Y. 2005. US 2005/0120756A1. United States Patent.
  • 21. Fan T., Chang M. 2005. US 2005/0284.190 A1. United States Patent.
  • 22. Duval D. L. et al. 2006. US 7,004,182 B2. United States Patent.
  • 23. Prassler, E., Ritter, A., Schaeffer, C., & Fiorini P. 2000. A Short History of Cleaning Robots. Autonomous Robots, 9, 211–226
  • 24. Fontani A. 2013. US 2013/0270459 A1. United States Patent.
  • 25. PataBlog 2022, 10.05. Color Spaces Retrieve from: https://patapom.com/blog/Colorimetry/ColorSpace/
  • 26. Gangakhedkar, N. S. (2010). Colour measurement of paint films and coatings. In M. L. Gulrajani (Ed.), Colour measurement: Principles, advances and industrial. Philadelphia, PA: Woodhead Publishing, 279-285
  • 27. Antalyalı, O.L. 2008. Varyans Analizi (ANOVA_MANOVA) In Kalaycı, S (Ed.), SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, Ankara:Asil Yayın Dağıtım Ltd. Şti.,131-167.
  • 28. Kayrı M. 2009. Araştırmalarda Gruplar Arası Farkın Belirlenmesine Yönelik Çoklu Karşılaştırma (Post-Hoc) Teknikleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 19(1), 51 - 64.
  • 29. Warmoeskerken, M.M.C.G., van der Vlist, P., Moholkar, V.S., & Nierstrasz, V.A. 2002. Laundry process intensification by ultrasound. Colloids and Surfaces A: Physicochem. Eng. Aspects, 210, 277-285.
  • 30. Canoglu, S., Gültekin, B.C., & Yükseloğlu, . S.M.(2004. Effect of ultrasonic energy in washing of medical surgery gowns. Ultrasonics, 42, 113–119.
  • 31. Gotoh, K., Hirami, C. 2012. Soil removal from polyester fabric by laundering with frequency-modulated ultrasound. Journal of Oleo Science, 61(5), 249-254.
  • 32. Gotoh, K., & Harayama,K. 2013. Application of ultrasound to textiles washing in aqueous solutions. Ultrasonics Sonochemistry, 20, 747–753.
  • 33. Ma, M., You, L., Chen, L., & Zhou, W. 2014. Effects of ultrasonic laundering on the properties of silk fabrics. Textile Research Journal, 84(20), 2166–2174.
  • 34. Gotoh, K., Harayama, K., & Tani, S. 2015. Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound. Tenside Surfactants Detergents, 52(6), 447-453

Ultrasound Technology in Carpet Cleaning

Year 2024, Volume: 34 Issue: 2, 175 - 184, 30.06.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1394196

Abstract

Carpets are widely used in living spaces for beautiful appearance, heat, and sound insulation. Cleaning carpets is essential for both their lifespan and health and hygiene. Washing operations are carried out at regular intervals in carpet-washing factories. Industrial carpet washing operations must be done consciously because a significant amount of water and time is consumed during these processes. In addition, problems such as discoloration and strength losses may be encountered in delicate carpets. In this study, stained carpets were washed at mediums with and without ultrasound at room temperature at different times. Mud stain was used as an example of particle dirt. The original unwashed carpet without stain was taken as a reference and compared with the washed carpet by evaluating the color differences and changes in the yellowness index to check the amount of stain removal. The color differences (Da*, Db*, DL*, DC*, Dh*, DE*) were close to zero, and the differences in the yellowness index were low, so it was concluded that the stained carpet was cleaned and turned to the original form after washing. The washing process was evaluated as successful because the color and yellowness index of the washed carpet were close to the unwashed carpet. Effects of washing type (with and without ultrasound), washing agent (with and without detergent), and washing time (30, 60, and 90 minutes) are significant for α=0,05 in washed carpets according to the original carpet. Interactions between parameters are also significant. If the washing conditions are consciously adjusted, ultrasonic washing can be an alternative to the soaking process in carpet washing. With ultrasonic washing, it can be possible to shorten the duration of the wetting step and effectively clean sensitive carpets in softer conditions without damaging them. It would be useful to carry out studies that reduce water usage by optimizing the amount of washing baths in the future.

Project Number

17-MÜH-053

Thanks

This study was supported by Ege University Scientific Research Projects Coordination Unit. [project Number 17-MÜH-053]. And also, the authors are thankful to Dr. Fatma Gündüz Balpetek for her helps in carpet staining.

References

  • 1. TÜBA 2022, 10.05, Türkçe Bilim Terimleri Sözlüğü. Retrieve from: http:// tubaterim.gov.tr/
  • 2. Alantar H., 2006. Bir Kültürün Dokunuşu, Bursa:Sentez Yayınları
  • 3. Alantar H., 2022.10.5. Halı Ülkesi Türkiye [pdf]. Retrieve from: Retrieve from: https://ihib.org.tr/yayinlar/hali-ulkesi-turkiye/
  • 4. Küçük Ev Halı Yıkama, 2022, 10.05, Halı Yıkama Teknikleri. http://www.haliyikamakucukev.com/bagcilahaliyikama_haliyikama_carpetclean_haliyikamateknikleri.html
  • 5. Dry Center 2022, 10.05, Halı Yıkama Aşamaları. Retrieve from: https://www.drycenter.com/hali-yikama/hali-yikama-asamalari.html
  • 6. Wang, W., Zhou, Q., Long, H., Zhang, Y., Rather, L. J., and Li, Q. 2021. A Study on Optimization of Irradiation Frequency for Ultrasonic Laundry of Textile. Fibers and Polymers 22(5), 1482-1489
  • 7. Thanu, D. P.R., Zhao M., Han, Z., Keswani, M. 2019. Fundamentals and Applications of Sonic Technology. In R. Kohli and K.L. Mittal (Eds.), Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques. Amsterdam:Elsevier, 1-48
  • 8. Harifi, T., Montazer, M. 2015. A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates. Ultrasonics Sonochemistry 23, 1–10.
  • 9. Li, Q., Ding, C., Yu, H., Hurren, C. J. and Wang, X. 2014. Adapting ultrasonic assisted wool scouring for industrial application. Textile Research Journal 84(11), 1183-1190
  • 10. Wright J. 1968. Patent Number:3,364,627. United States Patent.
  • 11. Williams R. C. 1981. Patent Number:4,307,484. United States Patent.
  • 12. Oh J., Lee H. 2006. US 2006/0236500 A1. United States Patent.
  • 13. Bosses M. D. 2007. US 7.225,505 B2. United States Patent.
  • 14. Bosses M. D. 2007. US 7.228,590 B2. United States Patent
  • 15. Prulett J. S. et al. 2020. US2020/0023414A1. United States Patent.
  • 16. Hortel T. C., Senapati N. 2002. US 6,391,061 B1. United States Patent.
  • 17. Bodet J. et al. 2002. US 2002/0189635 A1. United States Patent.
  • 18. Kitaori N. et al. 2002. US 6,493,289 B2. United States Patent.
  • 19. Hortel T. C., Senapati N. 2003. US 6,589,294 B2. United States Patent.
  • 20. Mah P.Y. 2005. US 2005/0120756A1. United States Patent.
  • 21. Fan T., Chang M. 2005. US 2005/0284.190 A1. United States Patent.
  • 22. Duval D. L. et al. 2006. US 7,004,182 B2. United States Patent.
  • 23. Prassler, E., Ritter, A., Schaeffer, C., & Fiorini P. 2000. A Short History of Cleaning Robots. Autonomous Robots, 9, 211–226
  • 24. Fontani A. 2013. US 2013/0270459 A1. United States Patent.
  • 25. PataBlog 2022, 10.05. Color Spaces Retrieve from: https://patapom.com/blog/Colorimetry/ColorSpace/
  • 26. Gangakhedkar, N. S. (2010). Colour measurement of paint films and coatings. In M. L. Gulrajani (Ed.), Colour measurement: Principles, advances and industrial. Philadelphia, PA: Woodhead Publishing, 279-285
  • 27. Antalyalı, O.L. 2008. Varyans Analizi (ANOVA_MANOVA) In Kalaycı, S (Ed.), SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, Ankara:Asil Yayın Dağıtım Ltd. Şti.,131-167.
  • 28. Kayrı M. 2009. Araştırmalarda Gruplar Arası Farkın Belirlenmesine Yönelik Çoklu Karşılaştırma (Post-Hoc) Teknikleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 19(1), 51 - 64.
  • 29. Warmoeskerken, M.M.C.G., van der Vlist, P., Moholkar, V.S., & Nierstrasz, V.A. 2002. Laundry process intensification by ultrasound. Colloids and Surfaces A: Physicochem. Eng. Aspects, 210, 277-285.
  • 30. Canoglu, S., Gültekin, B.C., & Yükseloğlu, . S.M.(2004. Effect of ultrasonic energy in washing of medical surgery gowns. Ultrasonics, 42, 113–119.
  • 31. Gotoh, K., Hirami, C. 2012. Soil removal from polyester fabric by laundering with frequency-modulated ultrasound. Journal of Oleo Science, 61(5), 249-254.
  • 32. Gotoh, K., & Harayama,K. 2013. Application of ultrasound to textiles washing in aqueous solutions. Ultrasonics Sonochemistry, 20, 747–753.
  • 33. Ma, M., You, L., Chen, L., & Zhou, W. 2014. Effects of ultrasonic laundering on the properties of silk fabrics. Textile Research Journal, 84(20), 2166–2174.
  • 34. Gotoh, K., Harayama, K., & Tani, S. 2015. Timesaving Washing of Textiles Utilizing 38 kHz Ultrasound. Tenside Surfactants Detergents, 52(6), 447-453
There are 34 citations in total.

Details

Primary Language English
Subjects Textile Finishing
Journal Section Articles
Authors

Pınar Çelik 0000-0003-3558-4213

Tülay Gülümser 0000-0001-6570-8876

Seher Perinçek 0000-0001-6566-3583

Ayşegül Körlü 0000-0002-8113-5681

Project Number 17-MÜH-053
Early Pub Date July 1, 2024
Publication Date June 30, 2024
Submission Date November 21, 2023
Acceptance Date March 27, 2024
Published in Issue Year 2024 Volume: 34 Issue: 2

Cite

APA Çelik, P., Gülümser, T., Perinçek, S., Körlü, A. (2024). Ultrasound Technology in Carpet Cleaning. Textile and Apparel, 34(2), 175-184. https://doi.org/10.32710/tekstilvekonfeksiyon.1394196

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.