Research Article
BibTex RIS Cite
Year 2020, , 50 - 57, 06.01.2020
https://doi.org/10.18186/thermal.671148

Abstract

References

  • [1] Sulzer G. Verfahren zur Erzeugung von Arbeit aus Warme. Swiss Pat 1950;269599.
  • [2] Feher E. Supercritical thermodynamic cycles for external and internal combustion engines. Astropower Inc Eng Rep May 1962 1962.
  • [3] Feher EG. The supercritical thermodynamic power cycle. Energy Convers 1968;8:85–90. https://doi.org/10.1016/0013-7480(68)90105-8.
  • [4] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 4th edition. Boston: Mcgraw-Hill College; 2001.
  • [5] Dostal V. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Ph.D. Thesis. Massachusetts Institute of Technology, 2004.
  • [6] Parma EJ, Wright SA, Vernon ME, Rochau G, Suo-Anttila A, Al Rashdan A, et al. Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept. Proc. Supercrit. CO2 Power Cycle Symp. Boulder CO May, 2011, p. 24–25.
  • [7] Sienicki JJ, Krajtl L, Moisseytsev A. Utilization of the supercritical CO2 Brayton cycle with sodium-cooled fast reactors 2014.
  • [8] Persichilli M, Kacludis A, Zdankiewicz E, Held T. Supercritical CO2 power cycle developments and commercialization: why sCO2 can displace steam ste. Power-Gen India Cent Asia 2012.
  • [9] Escalona JMMD, others. The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems. Present. Therm. Power Group Univ. Seville Supercrit. CO2 Power Cycle Symp., 2011.
  • [10] Turchi CS, Ma Z, Dyreby J. Supercritical CO2 for application in concentrating solar power systems. SCCO2 Power Cycle Symp. RPI Troy NY, 2009, p. 1–5.
  • [11] Held TJ. Initial Test Results of a Megawatt-class Supercritical CO2 heat engine. 4th Int. Symp. Supercrit. CO2 Power Cycles Pittsburgh PA Sept, 2014, p. 9–10.
  • [12] Moore J, Brun K, Evans N, Bueno P, Kalra C. Development of a 1 MWe supercritical CO2 Brayton cycle test loop. Proc. 4 Th Int. Symp.-Supercrit. CO2 Power Cycles Pittsburgh Pa. Sept. 9, vol. 10, 2014.
  • [13] Cha J, Ahn Y, Lee J, Lee J, Choi H. Installation of the Supercritical CO2 Compressor Performance Test Loop as a First Phase of the SCIEL Facility. 4th Int. Symp. Supercrit. CO2 Power Cycles Pittsburgh PA Sept, 2014, p. 9–10.
  • [14] Wright SA, Conboy TM, Rochau GE. Break-even Power Transients for two Simple Recuperated S-CO2 Brayton Cycle Test Configurations. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); 2011.
  • [15] Clementoni EM, Cox TL. Steady-state power operation of a supercritical carbon dioxide Brayton cycle. ASME Pap No GT2014-25336 2014.
  • [16] Sienicki J, Anton Moisseytsev, Dae Cho, Matthew Thomas, Rick Vilim, Yoichi Momozaki, et al. Recent Research & Development on the Supercritical Carbon Dioxide Brayton Cycle at Argonne National Laboratory - Supercritical CO2 Power Cycle Symposium 2009. http://www.sco2powercyclesymposium.org/resource_center/development_priorities/recent-research-development-on-the-supercritical-carbon-dioxide-brayton-cycle-at-argonne-national-laboratory (accessed July 5, 2017).
  • [17] Yan X. Dynamic analysis and control system design for an advanced nuclear gas turbine power plant. Massachusetts Institute of Technology, 1990.
  • [18] Moisseytsev A, Sienicki J. ANL Plant Dynamics Code and Control Strategy Development for the Supercritical Carbon Dioxide Brayton Cycle. 2009 Supercrit. CO2 Power Cycle Symp., 2009, p. 29–30.
  • [19] Casella F, Colonna P. Development of a Modelica dynamic model of solar supercritical CO2 Brayton cycle power plants for control studies. Proc. Supercrit. CO2 Power Cycle Symp., 2011, p. 1–7.
  • [20] Li Q, Flamant G, Yuan X, Neveu P, Luo L. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renew Sustain Energy Rev 2011;15:4855–4875.
  • [21] Dewson SJ, Thonon B. The development of high efficiency heat exchangers for helium gas cooled reactors. Int. Congr. Adv. Nucl. Power Plants ICAPP Pap., 2003.
  • [22] Haynes BS, Johnston A. High-effectiveness micro-exchanger performance. AIChE 2002 Spring Natl. Meet., 2002.
  • [23] Pecnik R, Colonna P. Accurate CFD Analysis of a Radial Compressor Operating with Supercritical CO2. Supercrit. CO2 Power Cycle Symp. Boulder Colo. USA, 2011.
  • [24] Bianchi N, Bolognani S, Luise F. Potentials and limits of high-speed PM motors. IEEE Trans Ind Appl 2004;40:1570–1578.
  • [25] Nagorny AS, Dravid NV, Jansen RH, Kenny BH. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications. Electr. Mach. Drives 2005 IEEE Int. Conf. On, IEEE; 2005, p. 635–641.
  • [26] Bianchi N, Bolognani S, Luise F. High speed drive using a slotless PM motor. IEEE Trans Power Electron 2006;21:1083–1090.
  • [27] Kolondzovski Z, Arkkio A, Larjola J, Sallinen P. Power limits of high-speed permanent-magnet electrical machines for compressor applications. IEEE Trans Energy Convers 2011;26:73–82.
  • [28] Gieras JF. Design of permanent magnet brushless motors for high speed applications. Electr. Mach. Syst. ICEMS 2014 17th Int. Conf. On, IEEE; 2014, p. 1–16.
  • [29] Mahaffey J, Kalra A, Anderson M, Sridharan K. Materials corrosion in high temperature supercritical carbon dioxide. 4th Int. Symp.-Supercrit. CO2 Power Cycles, 2014.
  • [30] Parks CJ. Corrosion of Candidate High Termperature Alloys in Supercritical Carbon Dioxide. Carleton University; 2013.
  • [31] De Barbadillo J, Baker BA, Gollihue R. Nickel-Base Superalloys for Advanced Power Systems–An Alloy Producer’s Perspective. Proceeding 4th Symp. Heat Resist. Steels Alloys High Effic. USC Power Plants China, 2011.
  • [32] Sridharan K, Anderson M. Corrosion in supercritical carbon dioxide: materials, environmental purity, surface treatments, and flow issues. Battelle Energy Alliance, LLC; 2013.
  • [33] Wang P-Y, Hou S-S. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions. Energy Convers Manag 2005;46:2637–55. https://doi.org/10.1016/j.enconman.2004.11.005.
  • [34] Chen L, Lin J, Sun F, Wu C. Efficiency of an Atkinson engine at maximum power density. Energy Convers Manag 1998;39:337–41. https://doi.org/10.1016/S0196-8904(96)00195-1.
  • [35] Kodal A, Sahin B, Yilmaz T. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Convers Manag 2000;41:235–48. https://doi.org/10.1016/S0196-8904(99)00107-7.
  • [36] Gonca G. Performance analysis and optimization of irreversible Dual–Atkinson cycle engine (DACE) with heat transfer effects under maximum power and maximum power density conditions. Appl Math Model 2016;40:6725–36. https://doi.org/10.1016/j.apm.2016.02.010.
  • [37] Sahin B, Kodal A, Yilmaz T, Yavuz H. Maximum power density analysis of an irreversible Joule-Brayton engine. J Phys Appl Phys 1996;29:1162.
  • [38] Gonca G, Sahin B, Ust Y, Parlak A. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Appl Therm Eng 2015;85:9–20. https://doi.org/10.1016/j.applthermaleng.2015.02.041.
  • [39] Chen L, Zheng J, Sun F, Wu C. Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Energy Convers Manag 2002;43:33–43. https://doi.org/10.1016/S0196-8904(01)00003-6.

COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE

Year 2020, , 50 - 57, 06.01.2020
https://doi.org/10.18186/thermal.671148

Abstract

The supercritical CO2 (s-CO2) power cycle has been taking into account as one of the most effective alternatives for energy conversion because of its higher efficiency and smaller compressor and turbine sizes for many years. A plenty number of parametric and experimental studies for the different type of s-CO2 cycles have been accomplished in the literature. In this paper, a performance analysis based on a power density criterion has been carried out for a simple s-CO2 Brayton power cycle. The parameters which are obtained from analyzes were compared with those of a power performance criterion that is shown that design parameters at maximum power density give a chance to smaller cycle components and more efficient s-CO2 Brayton power cycle. Due to loses in the cycle, the power and thermal efficiency will reduce by a certain amount, however, the maximum power density conditions will still give a better performance than at the maximum power output conditions. The analysis exemplified in this paper may provide a reference for the finding of optimal operating conditions and the design parameters for real s-CO2 Brayton power cycles.

References

  • [1] Sulzer G. Verfahren zur Erzeugung von Arbeit aus Warme. Swiss Pat 1950;269599.
  • [2] Feher E. Supercritical thermodynamic cycles for external and internal combustion engines. Astropower Inc Eng Rep May 1962 1962.
  • [3] Feher EG. The supercritical thermodynamic power cycle. Energy Convers 1968;8:85–90. https://doi.org/10.1016/0013-7480(68)90105-8.
  • [4] Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 4th edition. Boston: Mcgraw-Hill College; 2001.
  • [5] Dostal V. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Ph.D. Thesis. Massachusetts Institute of Technology, 2004.
  • [6] Parma EJ, Wright SA, Vernon ME, Rochau G, Suo-Anttila A, Al Rashdan A, et al. Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept. Proc. Supercrit. CO2 Power Cycle Symp. Boulder CO May, 2011, p. 24–25.
  • [7] Sienicki JJ, Krajtl L, Moisseytsev A. Utilization of the supercritical CO2 Brayton cycle with sodium-cooled fast reactors 2014.
  • [8] Persichilli M, Kacludis A, Zdankiewicz E, Held T. Supercritical CO2 power cycle developments and commercialization: why sCO2 can displace steam ste. Power-Gen India Cent Asia 2012.
  • [9] Escalona JMMD, others. The Potential of the Supercritical Carbon Dioxide Cycle in High Temperature Fuel Cell Hybrid Systems. Present. Therm. Power Group Univ. Seville Supercrit. CO2 Power Cycle Symp., 2011.
  • [10] Turchi CS, Ma Z, Dyreby J. Supercritical CO2 for application in concentrating solar power systems. SCCO2 Power Cycle Symp. RPI Troy NY, 2009, p. 1–5.
  • [11] Held TJ. Initial Test Results of a Megawatt-class Supercritical CO2 heat engine. 4th Int. Symp. Supercrit. CO2 Power Cycles Pittsburgh PA Sept, 2014, p. 9–10.
  • [12] Moore J, Brun K, Evans N, Bueno P, Kalra C. Development of a 1 MWe supercritical CO2 Brayton cycle test loop. Proc. 4 Th Int. Symp.-Supercrit. CO2 Power Cycles Pittsburgh Pa. Sept. 9, vol. 10, 2014.
  • [13] Cha J, Ahn Y, Lee J, Lee J, Choi H. Installation of the Supercritical CO2 Compressor Performance Test Loop as a First Phase of the SCIEL Facility. 4th Int. Symp. Supercrit. CO2 Power Cycles Pittsburgh PA Sept, 2014, p. 9–10.
  • [14] Wright SA, Conboy TM, Rochau GE. Break-even Power Transients for two Simple Recuperated S-CO2 Brayton Cycle Test Configurations. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); 2011.
  • [15] Clementoni EM, Cox TL. Steady-state power operation of a supercritical carbon dioxide Brayton cycle. ASME Pap No GT2014-25336 2014.
  • [16] Sienicki J, Anton Moisseytsev, Dae Cho, Matthew Thomas, Rick Vilim, Yoichi Momozaki, et al. Recent Research & Development on the Supercritical Carbon Dioxide Brayton Cycle at Argonne National Laboratory - Supercritical CO2 Power Cycle Symposium 2009. http://www.sco2powercyclesymposium.org/resource_center/development_priorities/recent-research-development-on-the-supercritical-carbon-dioxide-brayton-cycle-at-argonne-national-laboratory (accessed July 5, 2017).
  • [17] Yan X. Dynamic analysis and control system design for an advanced nuclear gas turbine power plant. Massachusetts Institute of Technology, 1990.
  • [18] Moisseytsev A, Sienicki J. ANL Plant Dynamics Code and Control Strategy Development for the Supercritical Carbon Dioxide Brayton Cycle. 2009 Supercrit. CO2 Power Cycle Symp., 2009, p. 29–30.
  • [19] Casella F, Colonna P. Development of a Modelica dynamic model of solar supercritical CO2 Brayton cycle power plants for control studies. Proc. Supercrit. CO2 Power Cycle Symp., 2011, p. 1–7.
  • [20] Li Q, Flamant G, Yuan X, Neveu P, Luo L. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renew Sustain Energy Rev 2011;15:4855–4875.
  • [21] Dewson SJ, Thonon B. The development of high efficiency heat exchangers for helium gas cooled reactors. Int. Congr. Adv. Nucl. Power Plants ICAPP Pap., 2003.
  • [22] Haynes BS, Johnston A. High-effectiveness micro-exchanger performance. AIChE 2002 Spring Natl. Meet., 2002.
  • [23] Pecnik R, Colonna P. Accurate CFD Analysis of a Radial Compressor Operating with Supercritical CO2. Supercrit. CO2 Power Cycle Symp. Boulder Colo. USA, 2011.
  • [24] Bianchi N, Bolognani S, Luise F. Potentials and limits of high-speed PM motors. IEEE Trans Ind Appl 2004;40:1570–1578.
  • [25] Nagorny AS, Dravid NV, Jansen RH, Kenny BH. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications. Electr. Mach. Drives 2005 IEEE Int. Conf. On, IEEE; 2005, p. 635–641.
  • [26] Bianchi N, Bolognani S, Luise F. High speed drive using a slotless PM motor. IEEE Trans Power Electron 2006;21:1083–1090.
  • [27] Kolondzovski Z, Arkkio A, Larjola J, Sallinen P. Power limits of high-speed permanent-magnet electrical machines for compressor applications. IEEE Trans Energy Convers 2011;26:73–82.
  • [28] Gieras JF. Design of permanent magnet brushless motors for high speed applications. Electr. Mach. Syst. ICEMS 2014 17th Int. Conf. On, IEEE; 2014, p. 1–16.
  • [29] Mahaffey J, Kalra A, Anderson M, Sridharan K. Materials corrosion in high temperature supercritical carbon dioxide. 4th Int. Symp.-Supercrit. CO2 Power Cycles, 2014.
  • [30] Parks CJ. Corrosion of Candidate High Termperature Alloys in Supercritical Carbon Dioxide. Carleton University; 2013.
  • [31] De Barbadillo J, Baker BA, Gollihue R. Nickel-Base Superalloys for Advanced Power Systems–An Alloy Producer’s Perspective. Proceeding 4th Symp. Heat Resist. Steels Alloys High Effic. USC Power Plants China, 2011.
  • [32] Sridharan K, Anderson M. Corrosion in supercritical carbon dioxide: materials, environmental purity, surface treatments, and flow issues. Battelle Energy Alliance, LLC; 2013.
  • [33] Wang P-Y, Hou S-S. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions. Energy Convers Manag 2005;46:2637–55. https://doi.org/10.1016/j.enconman.2004.11.005.
  • [34] Chen L, Lin J, Sun F, Wu C. Efficiency of an Atkinson engine at maximum power density. Energy Convers Manag 1998;39:337–41. https://doi.org/10.1016/S0196-8904(96)00195-1.
  • [35] Kodal A, Sahin B, Yilmaz T. A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions. Energy Convers Manag 2000;41:235–48. https://doi.org/10.1016/S0196-8904(99)00107-7.
  • [36] Gonca G. Performance analysis and optimization of irreversible Dual–Atkinson cycle engine (DACE) with heat transfer effects under maximum power and maximum power density conditions. Appl Math Model 2016;40:6725–36. https://doi.org/10.1016/j.apm.2016.02.010.
  • [37] Sahin B, Kodal A, Yilmaz T, Yavuz H. Maximum power density analysis of an irreversible Joule-Brayton engine. J Phys Appl Phys 1996;29:1162.
  • [38] Gonca G, Sahin B, Ust Y, Parlak A. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Appl Therm Eng 2015;85:9–20. https://doi.org/10.1016/j.applthermaleng.2015.02.041.
  • [39] Chen L, Zheng J, Sun F, Wu C. Performance comparison of an endoreversible closed variable temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Energy Convers Manag 2002;43:33–43. https://doi.org/10.1016/S0196-8904(01)00003-6.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Asım Sinan Karakurt

Publication Date January 6, 2020
Submission Date February 7, 2018
Published in Issue Year 2020

Cite

APA Karakurt, A. S. (2020). COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE. Journal of Thermal Engineering, 6(1), 50-57. https://doi.org/10.18186/thermal.671148
AMA Karakurt AS. COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE. Journal of Thermal Engineering. January 2020;6(1):50-57. doi:10.18186/thermal.671148
Chicago Karakurt, Asım Sinan. “COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE”. Journal of Thermal Engineering 6, no. 1 (January 2020): 50-57. https://doi.org/10.18186/thermal.671148.
EndNote Karakurt AS (January 1, 2020) COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE. Journal of Thermal Engineering 6 1 50–57.
IEEE A. S. Karakurt, “COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE”, Journal of Thermal Engineering, vol. 6, no. 1, pp. 50–57, 2020, doi: 10.18186/thermal.671148.
ISNAD Karakurt, Asım Sinan. “COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE”. Journal of Thermal Engineering 6/1 (January 2020), 50-57. https://doi.org/10.18186/thermal.671148.
JAMA Karakurt AS. COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE. Journal of Thermal Engineering. 2020;6:50–57.
MLA Karakurt, Asım Sinan. “COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE”. Journal of Thermal Engineering, vol. 6, no. 1, 2020, pp. 50-57, doi:10.18186/thermal.671148.
Vancouver Karakurt AS. COMPARATIVE MAXIMUM POWER DENSITY ANALYSIS OF A SUPERCRITICAL CO2 BRAYTON POWER CYCLE. Journal of Thermal Engineering. 2020;6(1):50-7.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering