Research Article
BibTex RIS Cite

MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS

Year 2020, , 405 - 421, 01.04.2020
https://doi.org/10.18186/thermal.712678

Abstract

In the present contribution attention is focused to extend the application of multifluid descriptions to rarefied conditions for the first time. To this aim, a multifluid Maxwell model and a multifluid Smoluchowski model are proposed for near wall behavior of the constituents of a rarefied gas mixture. Afterwards, multifluid balance equations in conjunction with these boundary conditions are solved for some slip flows of binary gas mixtures between parallel plates. The corresponding results are compared with those of a previously developed Navier–Stokes solver. Inspection of the results indicates that while the Navier–Stokes equations may lose their accuracy under high rarefaction, non–equilibrium features are properly captured by developed multifluid description. This successful method is thereafter utilized to discuss the consequences of velocity–slip, the tangential–momentum–accommodation coefficient, and mass disparity of the mixture constituents on the degree of non–equilibrium between the constituents of the gas mixtures between parallel plates.

References

  • [1] Goli A, Zahmatkesh I. Slip flow in porous micro–tubes under local thermal non–equilibrium conditions. Transp Phenom Nano Micro Scales 2018;6:79–87. doi:10.22111/TPNMS.2018.4034.
  • [2] Yan F, Farouk B. Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method. Microscale Thermophys Eng 2002;6:235–251. doi:10.1080/10893950290098296.
  • [3] Wang M, Li Z. Gas mixing in microchannels using the direct simulation Monte Carlo method. Int J Heat Mass Transf 2006;49:1696–1702. doi:10.1016/j.ijheatmasstransfer.2005.10.022.
  • [4] Hosseinalipour SM, Jabbari E, Madadelahi M, Fardad A. Gas mixing simulation in a T–Shape micro channel using the DSMC method. Transp Phenom Nano Micro Scales 2014;2:132–139. doi:10.7508/TPNMS.2014.02.005.
  • [5] Amini Y, Emdad H, Akramian K, Bordbar F. Investigation of the common nose cone shapes in different gas mixtures in high Knudsen numbers. Scientia Iranica B 2012;19:1511–1518. doi:10.1016/j.scient.2012.10.029.
  • [6] Vargas M, Stefanov S, Roussinov V. Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders. Int J Heat Mass Transf 2013;59:302–315. doi:10.1016/j.ijheatmasstransfer.2012.12.025.
  • [7] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction. Physica A 2004;336:294–311. doi:10.1016/j.physa.2003.12.047.
  • [8] Kosuge S, Takata S. Database for flows of binary gas mixtures through a plane microchannel. Eur J Mech B Fluids 2008;27:444–465. doi:10.1016/j.euromechflu.2007.08.002.
  • [9] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 2005;17:100607. doi:10.1063/1.1896986.
  • [10] McCormack FJ. Construction of linearized kinetic models for gaseous mixtures and molecular gases. Phys Fluids 1973;16:2095–2105. doi:10.1063/1.1694272.
  • [11] Szalmas L, Valougeorgis D. Rarefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross sections. Microfluid Nanofluid 2010;9:471–487. doi:10.1007/s10404–010–0564–9.
  • [12] Polikardiv AP, Ho MT, Graur I. Transient heat transfer in a rarefied binary gas mixture confined between parallel plates due to a sudden small change of wall temperatures. Int J Heat Mass Transf 2016;101:1292–1303. doi:10.1016/j.ijheatmasstransfer.2016.05.124.
  • [13] Ho MT, Wu L, Graur I, Zhang Y, Reese JM. Comparative study of the Boltzmann and McCormack equations for Couette and Fourier flows of binary gaseous mixtures. Int J Heat Mass Transf 2016;96:29–41. doi:10.1016/j.ijheatmasstransfer.2015.12.068.
  • [14] Tantos C, Valougeorgis D. Conductive heat transfer in rarefied binary gas mixtures confined between parallel plates based on kinetic modeling. Int J Heat Mass Transf 2018;117:846–860. doi:j.ijheatmasstransfer.2017.10.050.
  • [15] Kosuge S. Model Boltzmann equation for gas mixtures: Construction and numerical comparison. Eur J Mech B Fluids 2009;28:170–184. doi:10.1016/j.euromechflu.2008.05.001.
  • [16] Tantos C. Steady planar Couette flow of rarefied binary gaseous mixture based on kinetic modeling. Eur J Mech B Fluids 2019;76: 375–389. doi:10.1016/j.euromechflu.2019.04.005.
  • [17] Yamaguchi H, Hosoi J, Matsuda Y, Niimi T. Measurement of conductive heat transfer through rarefied binary gas mixtures. Vacuum 2019;160:164–170. doi:10.1016/j.vacuum.2018.11.021.
  • [18] Zahmatkesh I, Alishahi MM, Emdad H. New velocity–slip and temperature–jump boundary conditions for Navier–Stokes computation of gas mixture flows in microgeometries. Mech Res Commun 2011;38:417–424. doi:10.1016/j.mechrescom.2011.06.001.
  • [19] Zahmatkesh I, Emdad H, Alishahi MM. Navier–Stokes computation of some gas mixture problems in the slip flow regime. Scientia Iranica B 2015;22:187–195.
  • [20] Crouzet F, Daude F, Galon P, Hérard JM, Hurisse O, Liu Y. Validation of a two–fluid model on unsteady water–vapour flows. Comput Fluids 2015;119:131–142. doi:10.1016/j.compfluid.2015.06.035.
  • [21] Torshizi E, Zahmatkesh I. Comparison between single–phase, two–phase mixture and Eulerian–Eulerian models for the description of jet impingement of nanofluids. J Appl Comput Sci Mech 2016;27:55–70. doi:10.22067/fum_mech.v27i2.41797.
  • [22] Zahmatkesh I, Torshizi E. Scrutiny of unsteady flow and heat transfer in a backward–facing step under pulsating nanofluid blowing using the Eulerian–Eulerian approach. J Mech 2019;35:93–105. doi:10.1017/jmech.2017.73.
  • [23] Fox RO. A kinetic–based hyperbolic two–fluid model for binary hard–sphere mixtures. J Fluid Mech 2019;877:282–329. doi:10.1017/jfm.2019.608.
  • [24] Shin HC, Seo HS, Kim SM. Two–dimensional two–fluid model for air–oil wavy flow in horizontal tube. J Mech Sci Technol 2019;33:2693–2709. doi:10.1007/s12206–019–0517–5.
  • [25] Zahmatkesh I, Emdad H, Alishahi MM. Importance of molecular interaction description on the hydrodynamics of gas mixtures. Scientia Iranica B 2011;18:1287–1296. doi:10.1016/j.scient.2011.08.032.
  • [26] Zahmatkesh I, Emdad H, Alishahi MM. Two–fluid analysis of a gas mixing problem. Scientia Iranica B 2013;20:162–171. doi:10.1016/j.scient.2012.12.017.
  • [27] Zahmatkesh I, Emdad H, Alishahi MM. Viscous and inviscid solutions of some gas mixture problems. Heat Transf Res 2011;42:233–250. doi: 10.1615/HeatTransRes.2011002769.
  • [28] Zahmatkesh I, Emdad H, Alishahi MM. Effect of temperature level on parallel mixing of two gas streams. Mech Res Commun 2011;38:141–145. doi:10.1016/j.mechrescom.2011.01.004.
  • [29] Maxwell JC. On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc London, Ser B 1879;170:231–256. doi:10.1098/rstl.1879.0067.
  • [30] Smoluchowski M. On conduction of heat by rarefied gases (Ueber warmeleitung in verdunnten gasen). Ann Phys Chem 1898;64:101–130. doi:10.1002/andp.18983000110.
  • [31] Roe PL. Discrete models for numerical analysis of time–dependent multidimensional gas dynamics. J Comput Phys 1986;63:458–476. doi:10.1016/0021–9991(86)90204–4.
Year 2020, , 405 - 421, 01.04.2020
https://doi.org/10.18186/thermal.712678

Abstract

References

  • [1] Goli A, Zahmatkesh I. Slip flow in porous micro–tubes under local thermal non–equilibrium conditions. Transp Phenom Nano Micro Scales 2018;6:79–87. doi:10.22111/TPNMS.2018.4034.
  • [2] Yan F, Farouk B. Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method. Microscale Thermophys Eng 2002;6:235–251. doi:10.1080/10893950290098296.
  • [3] Wang M, Li Z. Gas mixing in microchannels using the direct simulation Monte Carlo method. Int J Heat Mass Transf 2006;49:1696–1702. doi:10.1016/j.ijheatmasstransfer.2005.10.022.
  • [4] Hosseinalipour SM, Jabbari E, Madadelahi M, Fardad A. Gas mixing simulation in a T–Shape micro channel using the DSMC method. Transp Phenom Nano Micro Scales 2014;2:132–139. doi:10.7508/TPNMS.2014.02.005.
  • [5] Amini Y, Emdad H, Akramian K, Bordbar F. Investigation of the common nose cone shapes in different gas mixtures in high Knudsen numbers. Scientia Iranica B 2012;19:1511–1518. doi:10.1016/j.scient.2012.10.029.
  • [6] Vargas M, Stefanov S, Roussinov V. Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders. Int J Heat Mass Transf 2013;59:302–315. doi:10.1016/j.ijheatmasstransfer.2012.12.025.
  • [7] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Gaseous mixture flow between two parallel plates in the whole range of the gas rarefaction. Physica A 2004;336:294–311. doi:10.1016/j.physa.2003.12.047.
  • [8] Kosuge S, Takata S. Database for flows of binary gas mixtures through a plane microchannel. Eur J Mech B Fluids 2008;27:444–465. doi:10.1016/j.euromechflu.2007.08.002.
  • [9] Naris S, Valougeorgis D, Kalempa D, Sharipov F. Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 2005;17:100607. doi:10.1063/1.1896986.
  • [10] McCormack FJ. Construction of linearized kinetic models for gaseous mixtures and molecular gases. Phys Fluids 1973;16:2095–2105. doi:10.1063/1.1694272.
  • [11] Szalmas L, Valougeorgis D. Rarefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross sections. Microfluid Nanofluid 2010;9:471–487. doi:10.1007/s10404–010–0564–9.
  • [12] Polikardiv AP, Ho MT, Graur I. Transient heat transfer in a rarefied binary gas mixture confined between parallel plates due to a sudden small change of wall temperatures. Int J Heat Mass Transf 2016;101:1292–1303. doi:10.1016/j.ijheatmasstransfer.2016.05.124.
  • [13] Ho MT, Wu L, Graur I, Zhang Y, Reese JM. Comparative study of the Boltzmann and McCormack equations for Couette and Fourier flows of binary gaseous mixtures. Int J Heat Mass Transf 2016;96:29–41. doi:10.1016/j.ijheatmasstransfer.2015.12.068.
  • [14] Tantos C, Valougeorgis D. Conductive heat transfer in rarefied binary gas mixtures confined between parallel plates based on kinetic modeling. Int J Heat Mass Transf 2018;117:846–860. doi:j.ijheatmasstransfer.2017.10.050.
  • [15] Kosuge S. Model Boltzmann equation for gas mixtures: Construction and numerical comparison. Eur J Mech B Fluids 2009;28:170–184. doi:10.1016/j.euromechflu.2008.05.001.
  • [16] Tantos C. Steady planar Couette flow of rarefied binary gaseous mixture based on kinetic modeling. Eur J Mech B Fluids 2019;76: 375–389. doi:10.1016/j.euromechflu.2019.04.005.
  • [17] Yamaguchi H, Hosoi J, Matsuda Y, Niimi T. Measurement of conductive heat transfer through rarefied binary gas mixtures. Vacuum 2019;160:164–170. doi:10.1016/j.vacuum.2018.11.021.
  • [18] Zahmatkesh I, Alishahi MM, Emdad H. New velocity–slip and temperature–jump boundary conditions for Navier–Stokes computation of gas mixture flows in microgeometries. Mech Res Commun 2011;38:417–424. doi:10.1016/j.mechrescom.2011.06.001.
  • [19] Zahmatkesh I, Emdad H, Alishahi MM. Navier–Stokes computation of some gas mixture problems in the slip flow regime. Scientia Iranica B 2015;22:187–195.
  • [20] Crouzet F, Daude F, Galon P, Hérard JM, Hurisse O, Liu Y. Validation of a two–fluid model on unsteady water–vapour flows. Comput Fluids 2015;119:131–142. doi:10.1016/j.compfluid.2015.06.035.
  • [21] Torshizi E, Zahmatkesh I. Comparison between single–phase, two–phase mixture and Eulerian–Eulerian models for the description of jet impingement of nanofluids. J Appl Comput Sci Mech 2016;27:55–70. doi:10.22067/fum_mech.v27i2.41797.
  • [22] Zahmatkesh I, Torshizi E. Scrutiny of unsteady flow and heat transfer in a backward–facing step under pulsating nanofluid blowing using the Eulerian–Eulerian approach. J Mech 2019;35:93–105. doi:10.1017/jmech.2017.73.
  • [23] Fox RO. A kinetic–based hyperbolic two–fluid model for binary hard–sphere mixtures. J Fluid Mech 2019;877:282–329. doi:10.1017/jfm.2019.608.
  • [24] Shin HC, Seo HS, Kim SM. Two–dimensional two–fluid model for air–oil wavy flow in horizontal tube. J Mech Sci Technol 2019;33:2693–2709. doi:10.1007/s12206–019–0517–5.
  • [25] Zahmatkesh I, Emdad H, Alishahi MM. Importance of molecular interaction description on the hydrodynamics of gas mixtures. Scientia Iranica B 2011;18:1287–1296. doi:10.1016/j.scient.2011.08.032.
  • [26] Zahmatkesh I, Emdad H, Alishahi MM. Two–fluid analysis of a gas mixing problem. Scientia Iranica B 2013;20:162–171. doi:10.1016/j.scient.2012.12.017.
  • [27] Zahmatkesh I, Emdad H, Alishahi MM. Viscous and inviscid solutions of some gas mixture problems. Heat Transf Res 2011;42:233–250. doi: 10.1615/HeatTransRes.2011002769.
  • [28] Zahmatkesh I, Emdad H, Alishahi MM. Effect of temperature level on parallel mixing of two gas streams. Mech Res Commun 2011;38:141–145. doi:10.1016/j.mechrescom.2011.01.004.
  • [29] Maxwell JC. On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc London, Ser B 1879;170:231–256. doi:10.1098/rstl.1879.0067.
  • [30] Smoluchowski M. On conduction of heat by rarefied gases (Ueber warmeleitung in verdunnten gasen). Ann Phys Chem 1898;64:101–130. doi:10.1002/andp.18983000110.
  • [31] Roe PL. Discrete models for numerical analysis of time–dependent multidimensional gas dynamics. J Comput Phys 1986;63:458–476. doi:10.1016/0021–9991(86)90204–4.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Iman Zahmatkesh This is me 0000-0003-2573-6789

Homayoun Emdad This is me 0000-0001-5870-384X

Mohammad Alishahi This is me 0000-0002-1286-6691

Publication Date April 1, 2020
Submission Date June 27, 2018
Published in Issue Year 2020

Cite

APA Zahmatkesh, I., Emdad, H., & Alishahi, M. (2020). MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS. Journal of Thermal Engineering, 6(3), 405-421. https://doi.org/10.18186/thermal.712678
AMA Zahmatkesh I, Emdad H, Alishahi M. MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS. Journal of Thermal Engineering. April 2020;6(3):405-421. doi:10.18186/thermal.712678
Chicago Zahmatkesh, Iman, Homayoun Emdad, and Mohammad Alishahi. “MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS”. Journal of Thermal Engineering 6, no. 3 (April 2020): 405-21. https://doi.org/10.18186/thermal.712678.
EndNote Zahmatkesh I, Emdad H, Alishahi M (April 1, 2020) MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS. Journal of Thermal Engineering 6 3 405–421.
IEEE I. Zahmatkesh, H. Emdad, and M. Alishahi, “MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS”, Journal of Thermal Engineering, vol. 6, no. 3, pp. 405–421, 2020, doi: 10.18186/thermal.712678.
ISNAD Zahmatkesh, Iman et al. “MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS”. Journal of Thermal Engineering 6/3 (April 2020), 405-421. https://doi.org/10.18186/thermal.712678.
JAMA Zahmatkesh I, Emdad H, Alishahi M. MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS. Journal of Thermal Engineering. 2020;6:405–421.
MLA Zahmatkesh, Iman et al. “MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS”. Journal of Thermal Engineering, vol. 6, no. 3, 2020, pp. 405-21, doi:10.18186/thermal.712678.
Vancouver Zahmatkesh I, Emdad H, Alishahi M. MULTIFLUID DESCRIPTION OF RAREFIED GAS MIXTURE FLOWS. Journal of Thermal Engineering. 2020;6(3):405-21.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering