Note
BibTex RIS Cite

PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION

Year 2020, , 92 - 98, 30.03.2020
https://doi.org/10.18186/thermal.728035

Abstract

A portable solar drying system with inbuilt PV module has been designed, fabricated and installed at Rajeev Gandhi Memorial College of Engineering & Technology, Nandyal, Andhra Pradesh. It is having a 1.1304 m2 absorber area and 3 m2 drying area. The dryer could accommodate 10 numbers of trays of size 0.3 m2). The brushless direct current (BLDC) motor fans of two 3 W capacity were operated directly from the energy generated by the PV panel of 10 W capacity installed in the solar dryer. As a part of the single batch load test performance analysis was tested using 3 kg of freshly harvested Fenugreek, Spinach, Chilli. After 6 h drying, 75 to 90 % of moisture has been removed where the solar radiation intensity measured was between 600-800 W/m2. Thus it is concluded that besides decreasing the overall transportation costs, the solar dryer with on-site efficient drying capability of food crops is highly beneficial in reducing the damage of produce and could retain sufficient nutrients.

References

  • [1] Nayak S, Tiwari GN. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings 2008; 40: 2015–2021. doi:10.1016/j.enbuild.2008.05.007.
  • [2] Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy 2010; 87: 2764–2767. doi:10.1016/j.apenergy.2010.03.014.
  • [3] Singh S, Kumar S. Testing method for thermal performance based rating of various solar dryer designs. Solar Energy 2012; 86: 87-98. doi:10.1016/j.solener.2011.09.009.
  • [4] Amori KE, Hussein M, Al-Najjar T. Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Applied Energy 2012; 98:384–395. doi:10.1016/j.apenergy.2012.03.061.
  • [5] Barnwal P, Tiwari GN. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 2008; 82: 1131–1144. doi:10.1016/j.solener.2008.05.012.
  • [6] Sevik S. Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy 2014; 105: 190–205. doi:10.1016/j.solener.2014.03.037.
  • [7] Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli M. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy 2010; 87: 2328–2339. doi:10.1016/j.apenergy.2010.01.001
  • [8] Kumar R, Rosen MA. Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering 2011; 31: 1402-1410. doi:10.1016/j.applthermaleng.2010.12.037.
  • [9] Janjai S, Lamlert N, Intawee P, Mahayothee B, Bala BK, Nagle M, Muller J. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy 2009; 83: 1550–1565. doi:10.1016/j.solener.2009.05.003.
  • [10] Hussein AK. Application of Nanotechnology in Renewable Energies-A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 2015; 42: 460-476. doi:10.1016/j.rser.2014.10.027
  • [11] Hussein AK, Walunj A, kolsi L. Applications of Nanotechnology to enhance the performance of the direct absorption solar collectors. Journal of Thermal Engineering 2016; 2: 529-540. doi:10.18186/jte.46009.
  • [12] Li D, Li Z, Zheng Y, Liu C, Hussein AK, And Liu X. Thermal performance of a PCM-filled double glazing unit with different termo-physical parameters of PCM. Solar energy 2016; 133: 207-220. doi:10.1016/j.solener.2016.03.039.
  • [13] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors-Recent advances and overview. Renewable and Sustainable Energy Reviews 2016; 62: 767-792. doi:10.1016/j.rser.2016.04.050.
  • [14] Hussein AK, Li D, kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017; 109 : 417-424. doi:10.1016/j.egypro.2017.03.044.
  • [15] Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews 2012; 16: 1383-1398. doi:10.1016/j.rser.2011.12.013.
  • [16] Yusof MH, Othman, Yatim B, Sopian K, Mohd NAB. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renewable Energy 2005; 30: 2005-2017. doi:10.1016/j.renene.2004.10.007.
  • [17] Zhang X, Zhao X, Smith S, Xu J, Yu X. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renewable and Sustainable Energy Reviews 2012; 16: 599-617. doi:10.1016/j.rser.2011.08.026.
Year 2020, , 92 - 98, 30.03.2020
https://doi.org/10.18186/thermal.728035

Abstract

References

  • [1] Nayak S, Tiwari GN. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings 2008; 40: 2015–2021. doi:10.1016/j.enbuild.2008.05.007.
  • [2] Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy 2010; 87: 2764–2767. doi:10.1016/j.apenergy.2010.03.014.
  • [3] Singh S, Kumar S. Testing method for thermal performance based rating of various solar dryer designs. Solar Energy 2012; 86: 87-98. doi:10.1016/j.solener.2011.09.009.
  • [4] Amori KE, Hussein M, Al-Najjar T. Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Applied Energy 2012; 98:384–395. doi:10.1016/j.apenergy.2012.03.061.
  • [5] Barnwal P, Tiwari GN. Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Solar Energy 2008; 82: 1131–1144. doi:10.1016/j.solener.2008.05.012.
  • [6] Sevik S. Experimental investigation of a new design solar-heat pump dryer under the different climatic conditions and drying behavior of selected products. Solar Energy 2014; 105: 190–205. doi:10.1016/j.solener.2014.03.037.
  • [7] Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Adeli M. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy 2010; 87: 2328–2339. doi:10.1016/j.apenergy.2010.01.001
  • [8] Kumar R, Rosen MA. Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering 2011; 31: 1402-1410. doi:10.1016/j.applthermaleng.2010.12.037.
  • [9] Janjai S, Lamlert N, Intawee P, Mahayothee B, Bala BK, Nagle M, Muller J. Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Solar Energy 2009; 83: 1550–1565. doi:10.1016/j.solener.2009.05.003.
  • [10] Hussein AK. Application of Nanotechnology in Renewable Energies-A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews 2015; 42: 460-476. doi:10.1016/j.rser.2014.10.027
  • [11] Hussein AK, Walunj A, kolsi L. Applications of Nanotechnology to enhance the performance of the direct absorption solar collectors. Journal of Thermal Engineering 2016; 2: 529-540. doi:10.18186/jte.46009.
  • [12] Li D, Li Z, Zheng Y, Liu C, Hussein AK, And Liu X. Thermal performance of a PCM-filled double glazing unit with different termo-physical parameters of PCM. Solar energy 2016; 133: 207-220. doi:10.1016/j.solener.2016.03.039.
  • [13] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors-Recent advances and overview. Renewable and Sustainable Energy Reviews 2016; 62: 767-792. doi:10.1016/j.rser.2016.04.050.
  • [14] Hussein AK, Li D, kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia 2017; 109 : 417-424. doi:10.1016/j.egypro.2017.03.044.
  • [15] Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews 2012; 16: 1383-1398. doi:10.1016/j.rser.2011.12.013.
  • [16] Yusof MH, Othman, Yatim B, Sopian K, Mohd NAB. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renewable Energy 2005; 30: 2005-2017. doi:10.1016/j.renene.2004.10.007.
  • [17] Zhang X, Zhao X, Smith S, Xu J, Yu X. Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renewable and Sustainable Energy Reviews 2012; 16: 599-617. doi:10.1016/j.rser.2011.08.026.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

V. Siva Reddy This is me 0000-0003-4217-6111

Publication Date March 30, 2020
Submission Date June 22, 2018
Published in Issue Year 2020

Cite

APA Reddy, V. S. (2020). PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION. Journal of Thermal Engineering, 6(2), 92-98. https://doi.org/10.18186/thermal.728035
AMA Reddy VS. PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION. Journal of Thermal Engineering. March 2020;6(2):92-98. doi:10.18186/thermal.728035
Chicago Reddy, V. Siva. “PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION”. Journal of Thermal Engineering 6, no. 2 (March 2020): 92-98. https://doi.org/10.18186/thermal.728035.
EndNote Reddy VS (March 1, 2020) PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION. Journal of Thermal Engineering 6 2 92–98.
IEEE V. S. Reddy, “PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION”, Journal of Thermal Engineering, vol. 6, no. 2, pp. 92–98, 2020, doi: 10.18186/thermal.728035.
ISNAD Reddy, V. Siva. “PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION”. Journal of Thermal Engineering 6/2 (March 2020), 92-98. https://doi.org/10.18186/thermal.728035.
JAMA Reddy VS. PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION. Journal of Thermal Engineering. 2020;6:92–98.
MLA Reddy, V. Siva. “PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION”. Journal of Thermal Engineering, vol. 6, no. 2, 2020, pp. 92-98, doi:10.18186/thermal.728035.
Vancouver Reddy VS. PORTABLE SOLAR DRYING SYSTEM WITH INBUILT PV MODULE FOR STANDALONE FORCED CONVECTION OPERATION. Journal of Thermal Engineering. 2020;6(2):92-8.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering