In this paper, the feasibility of glycerin/Al2O3 nanofluid for automotive cooling applications is experimentally
studied. The test setup includes an engine model and a car radiator and the heat transfer characteristics at required
operating conditions are analyzed under laminar flow conditions. Three different concentrations of nanofluids such as
0.05, 0.1 and 0.15 vol. % are used and the enhancement in the heat transfer coefficient is 62% when 0.15% volume
concentration of nanoparticles are added to the base fluid (glycerin) at a constant heat flux of 6919 W/m2. The
effectiveness of the radiator cooling system increases along with negligible increase in pumping power with increase
of volume concentration. The addition of nanoparticles in the base fluid enhances the absorption capacity of the
radiator coolant leading to the increase in the effectiveness. Results have also indicated that the nanofluids are mainly
dependent on particle concentration, flow rates, and temperature. Hence, it is suggested that nanoparticle suspended
coolants are promising and efficient for automotive cooling applications.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | July 1, 2020 |
Submission Date | April 5, 2018 |
Published in Issue | Year 2020 |
IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering