Research Article
BibTex RIS Cite
Year 2021, , 271 - 290, 01.01.2021
https://doi.org/10.18186/thermal.849869

Abstract

References

  • [1] Taner T, Dalkilic AS. A feasibility study of solar energy-techno economic analysis from Aksaray city, Turkey. J Therm Eng 2019;5:25–30. doi:10.18186/thermal.505498
  • [2] Kerme ED, Orfi J. Exergy-based thermodynamic analysis of solar driven organic Rankine cycle. J Therm Eng 2015;1:192–202. doi:10.18186/jte.25809.
  • [3] Loni R, Kasaeian AB, Asli-Ardeh EA, Ghobadian B, Najafi G. Comparison study of air and thermal oil application in a solar cavity receiver. J Therm Eng 2019;5:221–9. doi:10.18186/thermal.654628.
  • [4] Ghomrassi A, Mhiri H, Bournot P. Numerical study and optimization of parabolic trough solar collector receiver tube. J Sol Energy Eng Trans ASME 2015;137:051003. doi:10.1115/1.4030849.
  • [5] Treadwell GW. Design considerations for parabolic-cylindrical solar collectors, Albuquerque: SAND76-0082.1976.
  • [6] Bendt P, Rabl A, Gaul HW, Reed KA. Optical analysis and optimization of line focus solar collectors. Seri/Tr-34-09 1979.
  • [7] Ratzel AC. Receiver Assembly Design Studies for 2-m 90° ParabolicCylindrical Solar Collectors, in Sandia Laboratories. 1979.
  • [8] Rabl A. Active Solar Collectors and Their Applications. New York: Oxford University Press; 1985.
  • [9] Pettit RB, Vittitoe CN, Biggs F. Simplified Calculational Procedure for Determining the Amount of Intercepted Sunlight in an Imaging Solar Concentrator. J Sol Energy Eng Trans ASME 1983;105:101–7. doi:10.1115/1.3266335.
  • [10] Forristall R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. United States: 2003. NRELTechnical Report. p. 1-145. doi:NREL/TP-550-34169.
  • [11] Li M, Wang LL. Investigation of evacuated tube heated by solar trough concentrating system. Energy Convers Manag 2006;47:3591–601. doi:10.1016/j.enconman.2006.03.003.
  • [12] Yettou F, Gama A, Panwar NL, Azoui B, Malek A. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:1656–67. doi:10.18186/journal-of-thermal-engineering.364866.
  • [13] Loni R, Kasaeian A, Asli-Ardeh EA, Ghobadian B, Najafi G. Thermal evaluation of cavity receiver using water/Pg as the solar working fluid. J Therm Eng 2019;5:446–55. doi:10.18186/thermal.624341.
  • [14] Price H, Lu¨pfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in Parabolic Trough Solar Power Technology . J Sol Energy Eng 2002;124:109–25. doi:10.1115/1.1467922.
  • [15] Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Appl Energy 2011;88:5097–110. doi:10.1016/J.APENERGY.2011.07.012.
  • [16] Mwesigye A, Huan Z, Bello-Ochende T, Meyer JP. Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver. Sol Energy 2016;135:703–18. doi:10.1016/j.solener.2016.06.045.
  • [17] Zhu G. Study of the optical impact of receiver position error on parabolic trough collectors. J Sol Energy Eng Trans ASME 2013;135:1–5. doi:10.1115/1.4024247.
  • [18] Güven HM, Bannerot RB. Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs. J Sol Energy Eng Trans ASME 1986;108:275–81. doi:10.1115/1.3268106.
  • [19] Thomas A, Guven HM. Effect of optical errors on flux distribution around the absorber tube of a parabolic trough concentrator. Energy Convers Manag 1994;35:575–82. doi:10.1016/0196-8904(94)90040-X.
  • [20] Lüpfert E, Pottler K, Ulmer S, Riffelmann KJ, Neumann A, Schiricke B. Parabolic trough optical performance analysis techniques. J Sol Energy Eng Trans ASME 2007;129:147–52. doi:10.1115/1.2710249.
  • [21] Maccari A, Montecchi M. An optical profilometer for the characterisation of parabolic trough solar concentrators. Sol Energy 2007;81:185–94. doi:10.1016/j.solener.2006.04.004.
  • [22] García-Cortés S, Bello-García A, Ordóñez C. Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Appl Energy 2012;92:815–21. doi:10.1016/j.apenergy.2011.08.032.
  • [23] Ulmer S, Heinz B, Pottler K, Lüpfert E. Slope error measurements of parabolic troughs using the reflected image of the absorber tube. J Sol Energy Eng Trans ASME 2009;131:0110141–5. doi:10.1115/1.3035811.
  • [24] Skouri S, Ben Salah M, Bouadila S, Balghouthi M, Ben Nasrallah S. Optical, geometric and thermal study for solar parabolic concentrator efficiency improvement under Tunisia environment: A case study. Energy Convers Manag 2013;75:366–73. doi:10.1016/j.enconman.2013.06.022.
  • [25] Balghouthi M, Ali ABH, Trabelsi SE, Guizani A. Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Convers Manag 2014;86:1134–46. doi:10.1016/j.enconman.2014.06.095.
  • [26] Gaul H, Rabl A. Incidence-angle modifier and average optical efficiency of parabolic trough collectors. J Sol Energy Eng Trans ASME 1980;102:16–21. doi:10.1115/1.3266115.
  • [27] Zhao D, Xu E, Wang Z, Yu Q, Xu L, Zhu L. Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector. Renew Energy 2016;94:197–212. doi:10.1016/j.renene.2016.03.036.
  • [28] Ratzel AC. Annular Solar Receiver Thermal Characteristics, in Sandia National Laboratories. 1980.
  • [29] Treadwell GW, Grandjean NR. Systematic rotation and receiver location error effects on parabolic trough annual performance. J Sol Energy Eng Trans ASME 1982;104:345–8. doi:10.1115/1.3266328.
  • [30] Binotti M, Zhu G, Gray A, Manzolini G, Silva P. Geometric analysis of three-dimensional effects of parabolic trough collectors. Sol Energy 2013;88:88–96. doi:10.1016/j.solener.2012.10.025.
  • [31] Jeter SM. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Sol Energy 1986;37:335–45. doi:10.1016/0038-092X(86)90130-1.
  • [32] Jeter SM. Analytical determination of the optical performance of practical parabolic trough collectors from design data. Sol Energy 1987;39:11–21. doi:10.1016/S0038-092X(87)80047-6.
  • [33] Khanna S, Sharma V. Explicit Analytical Expression for Solar Flux Distribution on an Undeflected Absorber Tube of Parabolic Trough Concentrator Considering Sun-Shape and Optical Errors. J Sol Energy Eng Trans ASME 2016;138. doi:10.1115/1.4032122.
  • [34] Delatorre J, Baud G, Bézian JJ, Blanco S, Caliot C, Cornet JF, et al. Monte Carlo advances and concentrated solar applications. Sol Energy 2014;103:653–81. doi:10.1016/j.solener.2013.02.035.
  • [35] Donga RK, Kumar S. Parabolic trough collector with rhombus tube absorber for higher concentration ratio. Energy Sources, Part A Recover Util Environ Eff 2018;40:2620–31. doi:10.1080/15567036.2018.1505981.
  • [36] Cheng ZD, He YL, Xiao J, Tao YB, Xu RJ. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass Transf 2010;37:782–7. doi:10.1016/j.icheatmasstransfer.2010.05.002.
  • [37] He YL, Xiao J, Cheng ZD, Tao YB. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy 2011;36:976–85. doi:10.1016/j.renene.2010.07.017.
  • [38] Cheng ZD, He YL, Cui FQ, Xu RJ, Tao YB. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol Energy 2012;86:1770–84. doi:10.1016/j.solener.2012.02.039.
  • [39] Sheikholeslami M. Numerical approach for MHD Al[Formula presented]O[Formula presented]-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 2019;344:306–18. doi:10.1016/j.cma.2018.09.042.
  • [40] Sheikholeslami M, Haq R ul, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf 2019;130:1322–42. doi:10.1016/j.ijheatmasstransfer.2018.11.020.
  • [41] Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 2019;344:319–33. doi:10.1016/j.cma.2018.09.044.
  • [42] Cheng ZD, He YL, Cui FQ. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transf 2012;55:5631–41. doi:10.1016/j.ijheatmasstransfer.2012.05.057.
  • [43] Dudley VE, Kolb GJ, Mahoney AR, Mancini TR, Matthews CW, Sloan M, et al. Test results: SEGS LS-2 solar collector n.d. 1994. doi:10.2172/70756.
  • [44] Roesle M, Coskun V, Steinfeld A. Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system. J Sol Energy Eng Trans ASME 2011;133. doi:10.1115/1.4004276.
  • [45] Li ZY, Huang Z, Tao WQ. Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube. Energy 2016;113:1288–303. doi:10.1016/j.energy.2016.07.148.
  • [46] Mwesigye A, Bello-Ochende T, Meyer JP. Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios. Energy 2013;53:114–27. doi:10.1016/j.energy.2013.03.006.
  • [47] Wu Z, Li S, Yuan G, Lei D, Wang Z. Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Appl Energy 2014;113:902–11. doi:10.1016/j.apenergy.2013.07.050.
  • [48] Wirz M, Roesle M, Steinfeld A. Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators. J Sol Energy Eng Trans ASME 2012;134. doi:10.1115/1.4007494.
  • [49] Neumann A, Witzke A, Jones SA, Schmitt G. Representative terrestrial solar brightness profiles. J Sol Energy Eng Trans ASME 2002;124:198–204. doi:10.1115/1.1464880.
  • [50] Lazarus G, Roy S, Kunhappan D, Cephas E, Wongwi̇ses S. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. J Therm Eng 2015;1:104–12. doi:10.18186/jte.29475.
  • [51] Menni Y, Azzi A, Zidani C. Cfd simulation of thermo-aeraulic fields in a channel with multiple baffle plates. J Therm Eng 2018;4:2481–95. doi:10.18186/thermal.465696.
  • [52] Yildirim C, Tümen Özdil NF. Theoretical investigation of a solar air heater roughened by ribs and grooves. J Therm Eng 2018;4:1702–12. doi:10.18186/journal-of-thermal-engineering.365713.
  • [53] Dutta J, Kundu B. Thermal analysis on variable thickness absorber plate fin in flat-plate solar collectors using differential transform method. J Therm Eng 2020;6:158–69. doi:10.18186/THERMAL.672169.
  • [54] Mullick SC, Nanda SK. An improved technique for computing the heat loss factor of a tubular absorber. Sol Energy 1989;42:1–7. doi:https://doi.org/10.1016/0038-092X(89)90124-2.

PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR

Year 2021, , 271 - 290, 01.01.2021
https://doi.org/10.18186/thermal.849869

Abstract

In the present study, the effect of receiver position error on the optical and thermal performance of a parabolic trough collector (PTC) has been studied. Optical analysis of the PTC has been carried out by using Monte Carlo ray tracing (MCRT) method. The solar heat flux profile obtained from the optical analysis is coupled with the finite volume method (FVM) to study the thermal performance of the PTC. Simulations have been done for experimental SEGS LS2 solar collector used in Sandia National Laboratories. Syltherm 800 has been considered as heat transfer fluid (HTF). Receiver position errors in two directions i.e. along optical axis and lateral direction, have been taken. Results show that the receiver position error substantially influences the solar heat flux distribution and hence the temperature distribution on the absorber tube. The maximum circumferential temperature difference over the absorber tube increases up to by 199.7 K with receiver dislocation along the optical axis. The effects of the receiver position error on the optical efficiency and collector efficiency have also been studied. A maximum drop of 32% in the optical efficiency is observed when the receiver is displaced from the focus by 1.63% of focal length of the collector in both directions. The collector efficiency decreases by up to 14% when the receiver is offset by 1.63% of focal length of the collector along optical axis (away from the trough).

References

  • [1] Taner T, Dalkilic AS. A feasibility study of solar energy-techno economic analysis from Aksaray city, Turkey. J Therm Eng 2019;5:25–30. doi:10.18186/thermal.505498
  • [2] Kerme ED, Orfi J. Exergy-based thermodynamic analysis of solar driven organic Rankine cycle. J Therm Eng 2015;1:192–202. doi:10.18186/jte.25809.
  • [3] Loni R, Kasaeian AB, Asli-Ardeh EA, Ghobadian B, Najafi G. Comparison study of air and thermal oil application in a solar cavity receiver. J Therm Eng 2019;5:221–9. doi:10.18186/thermal.654628.
  • [4] Ghomrassi A, Mhiri H, Bournot P. Numerical study and optimization of parabolic trough solar collector receiver tube. J Sol Energy Eng Trans ASME 2015;137:051003. doi:10.1115/1.4030849.
  • [5] Treadwell GW. Design considerations for parabolic-cylindrical solar collectors, Albuquerque: SAND76-0082.1976.
  • [6] Bendt P, Rabl A, Gaul HW, Reed KA. Optical analysis and optimization of line focus solar collectors. Seri/Tr-34-09 1979.
  • [7] Ratzel AC. Receiver Assembly Design Studies for 2-m 90° ParabolicCylindrical Solar Collectors, in Sandia Laboratories. 1979.
  • [8] Rabl A. Active Solar Collectors and Their Applications. New York: Oxford University Press; 1985.
  • [9] Pettit RB, Vittitoe CN, Biggs F. Simplified Calculational Procedure for Determining the Amount of Intercepted Sunlight in an Imaging Solar Concentrator. J Sol Energy Eng Trans ASME 1983;105:101–7. doi:10.1115/1.3266335.
  • [10] Forristall R. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. United States: 2003. NRELTechnical Report. p. 1-145. doi:NREL/TP-550-34169.
  • [11] Li M, Wang LL. Investigation of evacuated tube heated by solar trough concentrating system. Energy Convers Manag 2006;47:3591–601. doi:10.1016/j.enconman.2006.03.003.
  • [12] Yettou F, Gama A, Panwar NL, Azoui B, Malek A. Receiver temperature maps of parabolic collector used for solar food cooking application in Algeria. J Therm Eng 2018;4:1656–67. doi:10.18186/journal-of-thermal-engineering.364866.
  • [13] Loni R, Kasaeian A, Asli-Ardeh EA, Ghobadian B, Najafi G. Thermal evaluation of cavity receiver using water/Pg as the solar working fluid. J Therm Eng 2019;5:446–55. doi:10.18186/thermal.624341.
  • [14] Price H, Lu¨pfert E, Kearney D, Zarza E, Cohen G, Gee R, et al. Advances in Parabolic Trough Solar Power Technology . J Sol Energy Eng 2002;124:109–25. doi:10.1115/1.1467922.
  • [15] Padilla RV, Demirkaya G, Goswami DY, Stefanakos E, Rahman MM. Heat transfer analysis of parabolic trough solar receiver. Appl Energy 2011;88:5097–110. doi:10.1016/J.APENERGY.2011.07.012.
  • [16] Mwesigye A, Huan Z, Bello-Ochende T, Meyer JP. Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver. Sol Energy 2016;135:703–18. doi:10.1016/j.solener.2016.06.045.
  • [17] Zhu G. Study of the optical impact of receiver position error on parabolic trough collectors. J Sol Energy Eng Trans ASME 2013;135:1–5. doi:10.1115/1.4024247.
  • [18] Güven HM, Bannerot RB. Derivation of universal error parameters for comprehensive optical analysis of parabolic troughs. J Sol Energy Eng Trans ASME 1986;108:275–81. doi:10.1115/1.3268106.
  • [19] Thomas A, Guven HM. Effect of optical errors on flux distribution around the absorber tube of a parabolic trough concentrator. Energy Convers Manag 1994;35:575–82. doi:10.1016/0196-8904(94)90040-X.
  • [20] Lüpfert E, Pottler K, Ulmer S, Riffelmann KJ, Neumann A, Schiricke B. Parabolic trough optical performance analysis techniques. J Sol Energy Eng Trans ASME 2007;129:147–52. doi:10.1115/1.2710249.
  • [21] Maccari A, Montecchi M. An optical profilometer for the characterisation of parabolic trough solar concentrators. Sol Energy 2007;81:185–94. doi:10.1016/j.solener.2006.04.004.
  • [22] García-Cortés S, Bello-García A, Ordóñez C. Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Appl Energy 2012;92:815–21. doi:10.1016/j.apenergy.2011.08.032.
  • [23] Ulmer S, Heinz B, Pottler K, Lüpfert E. Slope error measurements of parabolic troughs using the reflected image of the absorber tube. J Sol Energy Eng Trans ASME 2009;131:0110141–5. doi:10.1115/1.3035811.
  • [24] Skouri S, Ben Salah M, Bouadila S, Balghouthi M, Ben Nasrallah S. Optical, geometric and thermal study for solar parabolic concentrator efficiency improvement under Tunisia environment: A case study. Energy Convers Manag 2013;75:366–73. doi:10.1016/j.enconman.2013.06.022.
  • [25] Balghouthi M, Ali ABH, Trabelsi SE, Guizani A. Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Convers Manag 2014;86:1134–46. doi:10.1016/j.enconman.2014.06.095.
  • [26] Gaul H, Rabl A. Incidence-angle modifier and average optical efficiency of parabolic trough collectors. J Sol Energy Eng Trans ASME 1980;102:16–21. doi:10.1115/1.3266115.
  • [27] Zhao D, Xu E, Wang Z, Yu Q, Xu L, Zhu L. Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector. Renew Energy 2016;94:197–212. doi:10.1016/j.renene.2016.03.036.
  • [28] Ratzel AC. Annular Solar Receiver Thermal Characteristics, in Sandia National Laboratories. 1980.
  • [29] Treadwell GW, Grandjean NR. Systematic rotation and receiver location error effects on parabolic trough annual performance. J Sol Energy Eng Trans ASME 1982;104:345–8. doi:10.1115/1.3266328.
  • [30] Binotti M, Zhu G, Gray A, Manzolini G, Silva P. Geometric analysis of three-dimensional effects of parabolic trough collectors. Sol Energy 2013;88:88–96. doi:10.1016/j.solener.2012.10.025.
  • [31] Jeter SM. Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Sol Energy 1986;37:335–45. doi:10.1016/0038-092X(86)90130-1.
  • [32] Jeter SM. Analytical determination of the optical performance of practical parabolic trough collectors from design data. Sol Energy 1987;39:11–21. doi:10.1016/S0038-092X(87)80047-6.
  • [33] Khanna S, Sharma V. Explicit Analytical Expression for Solar Flux Distribution on an Undeflected Absorber Tube of Parabolic Trough Concentrator Considering Sun-Shape and Optical Errors. J Sol Energy Eng Trans ASME 2016;138. doi:10.1115/1.4032122.
  • [34] Delatorre J, Baud G, Bézian JJ, Blanco S, Caliot C, Cornet JF, et al. Monte Carlo advances and concentrated solar applications. Sol Energy 2014;103:653–81. doi:10.1016/j.solener.2013.02.035.
  • [35] Donga RK, Kumar S. Parabolic trough collector with rhombus tube absorber for higher concentration ratio. Energy Sources, Part A Recover Util Environ Eff 2018;40:2620–31. doi:10.1080/15567036.2018.1505981.
  • [36] Cheng ZD, He YL, Xiao J, Tao YB, Xu RJ. Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass Transf 2010;37:782–7. doi:10.1016/j.icheatmasstransfer.2010.05.002.
  • [37] He YL, Xiao J, Cheng ZD, Tao YB. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy 2011;36:976–85. doi:10.1016/j.renene.2010.07.017.
  • [38] Cheng ZD, He YL, Cui FQ, Xu RJ, Tao YB. Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol Energy 2012;86:1770–84. doi:10.1016/j.solener.2012.02.039.
  • [39] Sheikholeslami M. Numerical approach for MHD Al[Formula presented]O[Formula presented]-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng 2019;344:306–18. doi:10.1016/j.cma.2018.09.042.
  • [40] Sheikholeslami M, Haq R ul, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf 2019;130:1322–42. doi:10.1016/j.ijheatmasstransfer.2018.11.020.
  • [41] Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 2019;344:319–33. doi:10.1016/j.cma.2018.09.044.
  • [42] Cheng ZD, He YL, Cui FQ. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transf 2012;55:5631–41. doi:10.1016/j.ijheatmasstransfer.2012.05.057.
  • [43] Dudley VE, Kolb GJ, Mahoney AR, Mancini TR, Matthews CW, Sloan M, et al. Test results: SEGS LS-2 solar collector n.d. 1994. doi:10.2172/70756.
  • [44] Roesle M, Coskun V, Steinfeld A. Numerical analysis of heat loss from a parabolic trough absorber tube with active vacuum system. J Sol Energy Eng Trans ASME 2011;133. doi:10.1115/1.4004276.
  • [45] Li ZY, Huang Z, Tao WQ. Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube. Energy 2016;113:1288–303. doi:10.1016/j.energy.2016.07.148.
  • [46] Mwesigye A, Bello-Ochende T, Meyer JP. Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios. Energy 2013;53:114–27. doi:10.1016/j.energy.2013.03.006.
  • [47] Wu Z, Li S, Yuan G, Lei D, Wang Z. Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver. Appl Energy 2014;113:902–11. doi:10.1016/j.apenergy.2013.07.050.
  • [48] Wirz M, Roesle M, Steinfeld A. Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators. J Sol Energy Eng Trans ASME 2012;134. doi:10.1115/1.4007494.
  • [49] Neumann A, Witzke A, Jones SA, Schmitt G. Representative terrestrial solar brightness profiles. J Sol Energy Eng Trans ASME 2002;124:198–204. doi:10.1115/1.1464880.
  • [50] Lazarus G, Roy S, Kunhappan D, Cephas E, Wongwi̇ses S. Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. J Therm Eng 2015;1:104–12. doi:10.18186/jte.29475.
  • [51] Menni Y, Azzi A, Zidani C. Cfd simulation of thermo-aeraulic fields in a channel with multiple baffle plates. J Therm Eng 2018;4:2481–95. doi:10.18186/thermal.465696.
  • [52] Yildirim C, Tümen Özdil NF. Theoretical investigation of a solar air heater roughened by ribs and grooves. J Therm Eng 2018;4:1702–12. doi:10.18186/journal-of-thermal-engineering.365713.
  • [53] Dutta J, Kundu B. Thermal analysis on variable thickness absorber plate fin in flat-plate solar collectors using differential transform method. J Therm Eng 2020;6:158–69. doi:10.18186/THERMAL.672169.
  • [54] Mullick SC, Nanda SK. An improved technique for computing the heat loss factor of a tubular absorber. Sol Energy 1989;42:1–7. doi:https://doi.org/10.1016/0038-092X(89)90124-2.
There are 54 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ramesh Donga This is me 0000-0002-0306-1648

Suresh Kumar This is me 0000-0003-1414-6206

Abhay Kumar This is me 0000-0003-2630-083X

Publication Date January 1, 2021
Submission Date December 1, 2018
Published in Issue Year 2021

Cite

APA Donga, R., Kumar, S., & Kumar, A. (2021). PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR. Journal of Thermal Engineering, 7(1), 271-290. https://doi.org/10.18186/thermal.849869
AMA Donga R, Kumar S, Kumar A. PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR. Journal of Thermal Engineering. January 2021;7(1):271-290. doi:10.18186/thermal.849869
Chicago Donga, Ramesh, Suresh Kumar, and Abhay Kumar. “PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR”. Journal of Thermal Engineering 7, no. 1 (January 2021): 271-90. https://doi.org/10.18186/thermal.849869.
EndNote Donga R, Kumar S, Kumar A (January 1, 2021) PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR. Journal of Thermal Engineering 7 1 271–290.
IEEE R. Donga, S. Kumar, and A. Kumar, “PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR”, Journal of Thermal Engineering, vol. 7, no. 1, pp. 271–290, 2021, doi: 10.18186/thermal.849869.
ISNAD Donga, Ramesh et al. “PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR”. Journal of Thermal Engineering 7/1 (January 2021), 271-290. https://doi.org/10.18186/thermal.849869.
JAMA Donga R, Kumar S, Kumar A. PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR. Journal of Thermal Engineering. 2021;7:271–290.
MLA Donga, Ramesh et al. “PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR”. Journal of Thermal Engineering, vol. 7, no. 1, 2021, pp. 271-90, doi:10.18186/thermal.849869.
Vancouver Donga R, Kumar S, Kumar A. PERFORMANCE EVALUATION OF PARABOLIC TROUGH COLLECTOR WITH RECEIVER POSITION ERROR. Journal of Thermal Engineering. 2021;7(1):271-90.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering