Research Article
BibTex RIS Cite
Year 2021, , 18 - 29, 01.02.2021
https://doi.org/10.18186/thermal.865555

Abstract

References

  • [1] Abbasi, Tasneem, and S. A. Abbasi. Biomass Energy and the Environmental Impacts Associated with Its Production and Utilization. Vol. 14, 2010, pp. 919–37, doi:10.1016/j.rser.2009.11.006.
  • [2] Bhavanam, Anjireddy, and R. C. C. Sastry. “Kinetic Study of Solid Waste Pyrolysis Using Distributed Activation Energy Model.” Bioresource Technology, vol. 178, Elsevier Ltd, Feb. 2015, pp. 126–31, doi:10.1016/j.biortech.2014.10.028.
  • [3] Ceylan, Selim, and Yıldıray Topçu. “Bioresource Technology Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis.” BIORESOURCE TECHNOLOGY, vol. 156, Elsevier Ltd, 2014, pp. 182–88, doi:10.1016/j.biortech.2014.01.040.
  • [4] Collins, Stephen, and Praveen Ghodke. “Kinetic Parameter Evaluation of Groundnut Shell Pyrolysis through Use of Thermogravimetric Analysis.” Journal of Environmental Chemical Engineering, vol. 6, no. 4, Elsevier, 2018, pp. 4736–42, doi:10.1016/j.jece.2018.07.012.
  • [5] F.J.A. Antunes, and J. L. Figueiredo. Pyrolysis Kinetics of Lignocellulosic MaterialsÐthree Independent Reactions Model. Vol. 78, 1999.
  • [6] Ponnam V, Katari NK, Mandapati RN, Nannapaneni S, Tondepu S, Jonnalagadda SB. Efficacy of biochar in removal of organic pesticide, Bentazone from watershed systems. J Environ Sci Health B. 2020;55(4):396-405. doi: 10.1080/03601234.2019.1707008. Epub 2020 Jan 6. PMID: 31905102..
  • [7] Ghodke, Praveen, and Ramesh Naidu Mandapati. “Investigation of Particle Level Kinetic Modeling for Babul Wood Pyrolysis.” Fuel, vol. 236, no. July 2018, Elsevier, 2019, pp. 1008–17, doi:10.1016/j.fuel.2018.09.084.
  • [8] Ponnam, V., Reddy, R.A., Sumalatha, BSorption and Desorption Studies for the Removal of Bentazone using Biochar Amended Soil, Indian Journal of Ecology, 47(11), 128-131, 2020
  • [9] Harrison, L. G. “The Theory of Solid Phase Kinetics.” Comprehensive Chemical Kinetics, vol. 2, no. C, 1969, pp. 377–462, doi:10.1016/B978-0-444-40674-3.50011-0.
  • [10] Johnson, R. L., et al. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. 2012.
  • [11] Jong, W. De, et al. Pyrolysis of Miscanthus Giganteus and Wood Pellets : TG-FTIR Analysis and Reaction Kinetics Q. Vol. 82, 2003, pp. 1139–47, doi:10.1016/S0016-2361(02)00419-2.
  • [12] Kumar, Anup, et al. “Bioresource Technology Modelling of Pyrolysis of Large Wood Particles.” Bioresource Technology, vol. 100, no. 12, Elsevier Ltd, 2009, pp. 3134–39, doi:10.1016/j.biortech.2009.01.007.
  • [13] L.K.Velayutham, 1Dr., and 2Dr. K. Damodaran. Growth Rate of Chilli Production in Guntur District of Andhra Pradesh. Vol. 2, no. 11, 2015, pp. 1–5.
  • [14] Mishra, Ranjeet Kumar, and Kaustubha Mohanty. “Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis Ranjeet Kumar Mishra , Kaustubha Mohanty.” Bioresource Technology, Elsevier Ltd, 2017, doi:10.1016/j.biortech.2017.12.029.
  • [15] Muktham, Radhakumari, et al. Study of Thermal Behavior of Deoiled Karanja Seed Cake Biomass : Thermogravimetric Analysis and Pyrolysis Kinetics. 2016, doi:10.1002/ese3.109.
  • [16] Parthasarathy, Prakash, and Sheeba K. Narayanan. Determination of Kinetic Parameters of Biomass Samples Using Thermogravimetric Analysis. Vol. 00, no. 00, 2013, doi:10.1002/ep.
  • [17] Pode, Ramchandra. “Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant.” Renewable and Sustainable Energy Reviews, vol. 53, Jan. 2016, pp. 1468–85, doi:10.1016/j.rser.2015.09.051.
  • [18] Ren, Liang, et al. Preparation and Evaluation of Cattail Fiber-Based Activated Carbon For. Vol. 168, 2011, pp. 553–61, doi:10.1016/j.cej.2011.01.021.
  • [19] Sarkar, Arunabha, and Ghodke Praveen. “Utilization of Waste Biomass into Useful Forms of Energy.” Springer Proceeding in Energy, 2017, pp. 117–32, doi:10.1007/978-3-319-47257-7_12.
  • [20] Shawalliah, Siti, et al. “Bioresource Technology Combustion Characteristics of Malaysian Oil Palm Biomass , Sub-Bituminous Coal and Their Respective Blends via Thermogravimetric Analysis ( TGA ).” Bioresource Technology, vol. 123, no. 2012, Elsevier Ltd, 2020, pp. 581–91, doi:10.1016/j.biortech.2012.07.065.
  • [21] Silva, Rita Barros, et al. “Pyrolysis and Char Characterization of Refuse-Derived Fuel Components.” Energy & Fuels, vol. 29, no. 3, American Chemical Society, Mar. 2015, pp. 1997–2005, doi:10.1021/ef502011f.
  • [22] Song, X. D., et al. Chemosphere Application of Biochar from Sewage Sludge to Plant Cultivation : Influence of Pyrolysis Temperature and Biochar-to-Soil Ratio on Yield and Heavy Metal Accumulation. 2014, doi:10.1016/j.chemosphere.2014.01.070.
  • [23] Tinwala, Farha, et al. “Intermediate Pyrolysis of Agro-Industrial Biomasses in Bench-Scale Pyrolyser: Product Yields and Its Characterization.” Bioresource Technology, vol. 188, Elsevier Ltd, 2015, pp. 258–64, doi:10.1016/j.biortech.2015.02.006.
  • [24] Vijetha Ponnam 1 , Subbaiah Tondepu 1 , Vineet Aniya 2 , Alka Kumari 2 , Satyavathi Bankupalli 2,*, Ramesh Naidu Mandapati 1. Torrefied and Unmodified Capsicum Annuam Biochar for the Removal of Synthetic Hazardous Pesticide (Carbofuran) from Watershed. Vol. 9, no. 5, 2019, pp. 4384–93.
  • [25] Vlaev, L. T., et al. Non-Isothermal Kinetics of Pyrolysis of Rice Husk. Vol. 406, no. January, 2003, pp. 1–7, doi:10.1016/S0040-6031(03)00222-3.
  • [26] Vyazovkin, Sergey, and Charles A. Wight. Model-Free and Model- ® Tting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Vol. 341, 1999, pp. 53–68.
  • [27] Wang, Xue-li, et al. “Study on the Solubilization Capacity of Bio-Oil in Diesel by Microemulsion Technology with Span80 as Surfactant.” Fuel Processing Technology, vol. 118, Feb. 2014, pp. 141–47, doi:10.1016/j.fuproc.2013.08.020.
  • [28] Yangali, Pablo, et al. “Co-Pyrolysis Reaction Rates and Activation Energies of West Virginia Coal and Cherry Pit Blends.” Journal of Analytical and Applied Pyrolysis, vol. 108, July 2014, pp. 203–11, doi:10.1016/j.jaap.2014.04.015.

THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD

Year 2021, , 18 - 29, 01.02.2021
https://doi.org/10.18186/thermal.865555

Abstract

In the present study, the pyrolysis behaviour of Capsicum Annuum stem Waste (CAW) was studied applying thermogravimetric analysis to evaluate the intrinsic kinetic parameters to develop a pyrolysis reactor for utilizing CAW. The thermal decomposition of CAW was achieved between 373 – 1173 K under inert conditions at different heating rates of 10, 20, and 30 K min-1. Model-free kinetic methods like Kissinger-Akahira-Sunose (KAS), Ozawa Flynn Wall (OFW) and Coats Redfern methods were applied to work out the kinetic parameters. To identify the utility of CAW and its biochar, physio-chemical characteristics such as proximate and ultimate analysis, scanning electron microscopy, and Fourier Transform Infrared analysis are reported.

References

  • [1] Abbasi, Tasneem, and S. A. Abbasi. Biomass Energy and the Environmental Impacts Associated with Its Production and Utilization. Vol. 14, 2010, pp. 919–37, doi:10.1016/j.rser.2009.11.006.
  • [2] Bhavanam, Anjireddy, and R. C. C. Sastry. “Kinetic Study of Solid Waste Pyrolysis Using Distributed Activation Energy Model.” Bioresource Technology, vol. 178, Elsevier Ltd, Feb. 2015, pp. 126–31, doi:10.1016/j.biortech.2014.10.028.
  • [3] Ceylan, Selim, and Yıldıray Topçu. “Bioresource Technology Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis.” BIORESOURCE TECHNOLOGY, vol. 156, Elsevier Ltd, 2014, pp. 182–88, doi:10.1016/j.biortech.2014.01.040.
  • [4] Collins, Stephen, and Praveen Ghodke. “Kinetic Parameter Evaluation of Groundnut Shell Pyrolysis through Use of Thermogravimetric Analysis.” Journal of Environmental Chemical Engineering, vol. 6, no. 4, Elsevier, 2018, pp. 4736–42, doi:10.1016/j.jece.2018.07.012.
  • [5] F.J.A. Antunes, and J. L. Figueiredo. Pyrolysis Kinetics of Lignocellulosic MaterialsÐthree Independent Reactions Model. Vol. 78, 1999.
  • [6] Ponnam V, Katari NK, Mandapati RN, Nannapaneni S, Tondepu S, Jonnalagadda SB. Efficacy of biochar in removal of organic pesticide, Bentazone from watershed systems. J Environ Sci Health B. 2020;55(4):396-405. doi: 10.1080/03601234.2019.1707008. Epub 2020 Jan 6. PMID: 31905102..
  • [7] Ghodke, Praveen, and Ramesh Naidu Mandapati. “Investigation of Particle Level Kinetic Modeling for Babul Wood Pyrolysis.” Fuel, vol. 236, no. July 2018, Elsevier, 2019, pp. 1008–17, doi:10.1016/j.fuel.2018.09.084.
  • [8] Ponnam, V., Reddy, R.A., Sumalatha, BSorption and Desorption Studies for the Removal of Bentazone using Biochar Amended Soil, Indian Journal of Ecology, 47(11), 128-131, 2020
  • [9] Harrison, L. G. “The Theory of Solid Phase Kinetics.” Comprehensive Chemical Kinetics, vol. 2, no. C, 1969, pp. 377–462, doi:10.1016/B978-0-444-40674-3.50011-0.
  • [10] Johnson, R. L., et al. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. 2012.
  • [11] Jong, W. De, et al. Pyrolysis of Miscanthus Giganteus and Wood Pellets : TG-FTIR Analysis and Reaction Kinetics Q. Vol. 82, 2003, pp. 1139–47, doi:10.1016/S0016-2361(02)00419-2.
  • [12] Kumar, Anup, et al. “Bioresource Technology Modelling of Pyrolysis of Large Wood Particles.” Bioresource Technology, vol. 100, no. 12, Elsevier Ltd, 2009, pp. 3134–39, doi:10.1016/j.biortech.2009.01.007.
  • [13] L.K.Velayutham, 1Dr., and 2Dr. K. Damodaran. Growth Rate of Chilli Production in Guntur District of Andhra Pradesh. Vol. 2, no. 11, 2015, pp. 1–5.
  • [14] Mishra, Ranjeet Kumar, and Kaustubha Mohanty. “Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis Ranjeet Kumar Mishra , Kaustubha Mohanty.” Bioresource Technology, Elsevier Ltd, 2017, doi:10.1016/j.biortech.2017.12.029.
  • [15] Muktham, Radhakumari, et al. Study of Thermal Behavior of Deoiled Karanja Seed Cake Biomass : Thermogravimetric Analysis and Pyrolysis Kinetics. 2016, doi:10.1002/ese3.109.
  • [16] Parthasarathy, Prakash, and Sheeba K. Narayanan. Determination of Kinetic Parameters of Biomass Samples Using Thermogravimetric Analysis. Vol. 00, no. 00, 2013, doi:10.1002/ep.
  • [17] Pode, Ramchandra. “Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant.” Renewable and Sustainable Energy Reviews, vol. 53, Jan. 2016, pp. 1468–85, doi:10.1016/j.rser.2015.09.051.
  • [18] Ren, Liang, et al. Preparation and Evaluation of Cattail Fiber-Based Activated Carbon For. Vol. 168, 2011, pp. 553–61, doi:10.1016/j.cej.2011.01.021.
  • [19] Sarkar, Arunabha, and Ghodke Praveen. “Utilization of Waste Biomass into Useful Forms of Energy.” Springer Proceeding in Energy, 2017, pp. 117–32, doi:10.1007/978-3-319-47257-7_12.
  • [20] Shawalliah, Siti, et al. “Bioresource Technology Combustion Characteristics of Malaysian Oil Palm Biomass , Sub-Bituminous Coal and Their Respective Blends via Thermogravimetric Analysis ( TGA ).” Bioresource Technology, vol. 123, no. 2012, Elsevier Ltd, 2020, pp. 581–91, doi:10.1016/j.biortech.2012.07.065.
  • [21] Silva, Rita Barros, et al. “Pyrolysis and Char Characterization of Refuse-Derived Fuel Components.” Energy & Fuels, vol. 29, no. 3, American Chemical Society, Mar. 2015, pp. 1997–2005, doi:10.1021/ef502011f.
  • [22] Song, X. D., et al. Chemosphere Application of Biochar from Sewage Sludge to Plant Cultivation : Influence of Pyrolysis Temperature and Biochar-to-Soil Ratio on Yield and Heavy Metal Accumulation. 2014, doi:10.1016/j.chemosphere.2014.01.070.
  • [23] Tinwala, Farha, et al. “Intermediate Pyrolysis of Agro-Industrial Biomasses in Bench-Scale Pyrolyser: Product Yields and Its Characterization.” Bioresource Technology, vol. 188, Elsevier Ltd, 2015, pp. 258–64, doi:10.1016/j.biortech.2015.02.006.
  • [24] Vijetha Ponnam 1 , Subbaiah Tondepu 1 , Vineet Aniya 2 , Alka Kumari 2 , Satyavathi Bankupalli 2,*, Ramesh Naidu Mandapati 1. Torrefied and Unmodified Capsicum Annuam Biochar for the Removal of Synthetic Hazardous Pesticide (Carbofuran) from Watershed. Vol. 9, no. 5, 2019, pp. 4384–93.
  • [25] Vlaev, L. T., et al. Non-Isothermal Kinetics of Pyrolysis of Rice Husk. Vol. 406, no. January, 2003, pp. 1–7, doi:10.1016/S0040-6031(03)00222-3.
  • [26] Vyazovkin, Sergey, and Charles A. Wight. Model-Free and Model- ® Tting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Vol. 341, 1999, pp. 53–68.
  • [27] Wang, Xue-li, et al. “Study on the Solubilization Capacity of Bio-Oil in Diesel by Microemulsion Technology with Span80 as Surfactant.” Fuel Processing Technology, vol. 118, Feb. 2014, pp. 141–47, doi:10.1016/j.fuproc.2013.08.020.
  • [28] Yangali, Pablo, et al. “Co-Pyrolysis Reaction Rates and Activation Energies of West Virginia Coal and Cherry Pit Blends.” Journal of Analytical and Applied Pyrolysis, vol. 108, July 2014, pp. 203–11, doi:10.1016/j.jaap.2014.04.015.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Vijetha Ponnam This is me 0000-0003-3746-9948

Praveen Ghodke This is me 0000-0003-3427-7481

Subbaiah Tondepu This is me 0000-0001-6688-2710

Ramesh Mandapati This is me 0000-0001-5870-3938

Publication Date February 1, 2021
Submission Date June 6, 2020
Published in Issue Year 2021

Cite

APA Ponnam, V., Ghodke, P., Tondepu, S., Mandapati, R. (2021). THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD. Journal of Thermal Engineering, 7(2), 18-29. https://doi.org/10.18186/thermal.865555
AMA Ponnam V, Ghodke P, Tondepu S, Mandapati R. THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD. Journal of Thermal Engineering. February 2021;7(2):18-29. doi:10.18186/thermal.865555
Chicago Ponnam, Vijetha, Praveen Ghodke, Subbaiah Tondepu, and Ramesh Mandapati. “THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD”. Journal of Thermal Engineering 7, no. 2 (February 2021): 18-29. https://doi.org/10.18186/thermal.865555.
EndNote Ponnam V, Ghodke P, Tondepu S, Mandapati R (February 1, 2021) THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD. Journal of Thermal Engineering 7 2 18–29.
IEEE V. Ponnam, P. Ghodke, S. Tondepu, and R. Mandapati, “THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 18–29, 2021, doi: 10.18186/thermal.865555.
ISNAD Ponnam, Vijetha et al. “THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD”. Journal of Thermal Engineering 7/2 (February 2021), 18-29. https://doi.org/10.18186/thermal.865555.
JAMA Ponnam V, Ghodke P, Tondepu S, Mandapati R. THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD. Journal of Thermal Engineering. 2021;7:18–29.
MLA Ponnam, Vijetha et al. “THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 18-29, doi:10.18186/thermal.865555.
Vancouver Ponnam V, Ghodke P, Tondepu S, Mandapati R. THERMAL BEHAVIOUR KINETIC MODELING OF CAPSICUM ANNUUM WASTE BIOMASS USING AN ISO-CONVERSION METHOD. Journal of Thermal Engineering. 2021;7(2):18-29.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering