Research Article
BibTex RIS Cite
Year 2021, , 270 - 283, 01.02.2021
https://doi.org/10.18186/thermal.872366

Abstract

References

  • [1] Mutlu E, Bir Minikanal Isı Değiştiricisinde Kanal Boyutlarının Isıl-Hidrolik Performansa Etkisinin Sayısal Olarak Incelenmesi. M.Sc thesis. Turkey: Osmangazi University , 2006.
  • [2] Bhatkar VW, Kriplani V.M , Awari GK. Experimental performance of R134a and R152a using microchannel condenser. Journal of Thermal Engineering 2015; 1:575-82.https://doi.org/10.18186/jte.55930
  • [3] Belhadj A , Bouchenafa R, Saim R. A numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section. Journal of Thermal Engineering 2018; 4: 1912-25. https://doi.org/10.18186/thermal.438480
  • [4] Vafaei A, Aliehyaei MA. Optimization of micro gas turbine by economic, exergy and environment analysis using genetic, bee colony and searching algorithms. Journal of Thermal Engineering 2020; 6:117-40. https://doi.org/10.18186/thermal.672054
  • [5] Alvares E, Degasperi F, Gongora MR, Rubio and Giudici R. Development of a micro heat exchanger made with ceramic multi layers (LTCC) and its set up to gas flow measurements.10 th International Symposium On Process Systems Engineering 2009; 1773-8. https://doi.org/10.1016/S1570-7946(09)70686-8
  • [6] Kang SW and Tseng SC. Analysis of effectiveness and pressure drop in micro flow heat exchanger. Applied Thermal Engineering 2007; 27: 877-85. https://doi.org/10.1016/j.applthermaleng.2006.09.002
  • [7] Alm B, Imke U, Knitter R, Schygulla U, Zimmermann S. Testing and simulation of ceramic micro heat exchangers. Chemical Engineering Journal 2008;135: 179-84. https://doi.org/10.1016/j.cej.2007.07.005
  • [8] Hasan MI, Rageb AA, Yaghoubi M, Homayoni H. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences 2009; 48: 1607-18. https://doi.org/10.1016/j.ijthermalsci.2009.01.004
  • [9] Dang T, Teng JT, Chu JC. A study on the simulation and experiment of a microchannel counter-flow heat exchanger. Applied Thermal Engineering 2010; 30: 2163-72. https://doi.org/10.1016/j.applthermaleng.2010.05.029
  • [10] Mathew B, Hegab H. Experimental investigation of thermal model of parallel flow microchannel heat exchangers subjected to external heat flux. International Journal of Heat and Mass Transfer 2012; 55: 2193-9. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.024
  • [11] Hasan MI, Hasan HM, Abid GA. Study of the axial heat conduction in parallel flow microchannel heat exchanger. Journal of King Saud University Engineering Sciences 2014 ; 26: 122-31. https://doi.org/10.1016/j.jksues.2012.12.004
  • [12] Dixit T, Ghosh I. Theoretical and experimental studies of crossflow minichannel heat exchanger subjected to external heat ingress.Applied Thermal Engineering 2014; 73: 162-71. https://doi.org/10.1016/j.applthermaleng.2014.07.049
  • [13] Zhou F, Zhou W, Qiu Q, Yu W, Chu X. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger. Applied Thermal Engineering 2018; 137: 616-31. https://doi.org/10.1016/j.applthermaleng.2018.03.069
  • [14] Ling W, Zhou W, Yu W, Guo Z, Chen J. Effects of operation parameters on thermal and hydraulic performances of a novel interlaced microchannel. Applied Thermal Engineering 2019; 147:143-54. https://doi.org/10.1016/j.applthermaleng.2018.10.065
  • [15] Xu B, Ooi KT, Wong NT. Experimental investigation of flow friction for liquid flow in microchannels. Int. Comm. Heat Mass Transfer 2000; 27: 1165-76. https://doi.org/10.1016/S0735-1933(00)00203-7
  • [16] Peng XF, Peterson GP . Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer 1996; 39: 2599-608. https://doi.org/10.1016/0017-9310(95)00327-4
  • [17] Ozisik MN. Heat Transfer: A Basic Approach, McGraw-Hill, New York; 1985.
  • [18] Çengel YA, Cimbala JM. Fluid Mechanics, Fundamentals and Applications, McGraw-Hill, New York; 2003.
  • [19] Maynes D, Webb BW. Velocity profile characterization in sub-milimeter diameters tubes using molecular tagging velocimetry. Experiments in Fluids 2002; 32:3-15. https://doi.org/10.1007/s003480200001
  • [20] Bejan A. Heat Transfer, Wiley, Newyork; 1993.
  • [21] Fraas AP. Heat Exchanger Design, Wiley, New York;1989.
  • [22] White FM. Fluid Mechanics.7th Edition, McGraw- Hill, New York; 2011

EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER

Year 2021, , 270 - 283, 01.02.2021
https://doi.org/10.18186/thermal.872366

Abstract

In this study, a cross flow microchannel heat exchanger has been manufactured out of standard sizes using aluminum material. The plate dimensions of heat exchangers have been 50x50x3 (mm3) that composed of two plates in cross flow arrangement. All evaluated geometries have been consisted of square microchannels with 490 μm width and 490 μm depth. An appropriate experimental facility has been established to perform the fluid flow and heat experiments. Moreover, heat transfer and fluid flow characteristics in microchannels have been simulated by ANSYS Fluent V15 Computer Program and experimental results have been compared with Computational Fluid Dynamics (CFD) results. Results showed that experimental heat transfer data was a very good agreement between data obtained by CFD simulation. However, the numeric pressure drop values have not been compatible with experimental ones.

References

  • [1] Mutlu E, Bir Minikanal Isı Değiştiricisinde Kanal Boyutlarının Isıl-Hidrolik Performansa Etkisinin Sayısal Olarak Incelenmesi. M.Sc thesis. Turkey: Osmangazi University , 2006.
  • [2] Bhatkar VW, Kriplani V.M , Awari GK. Experimental performance of R134a and R152a using microchannel condenser. Journal of Thermal Engineering 2015; 1:575-82.https://doi.org/10.18186/jte.55930
  • [3] Belhadj A , Bouchenafa R, Saim R. A numerical study of forced convective flow in microchannels heat sinks with periodic expansion-constriction cross section. Journal of Thermal Engineering 2018; 4: 1912-25. https://doi.org/10.18186/thermal.438480
  • [4] Vafaei A, Aliehyaei MA. Optimization of micro gas turbine by economic, exergy and environment analysis using genetic, bee colony and searching algorithms. Journal of Thermal Engineering 2020; 6:117-40. https://doi.org/10.18186/thermal.672054
  • [5] Alvares E, Degasperi F, Gongora MR, Rubio and Giudici R. Development of a micro heat exchanger made with ceramic multi layers (LTCC) and its set up to gas flow measurements.10 th International Symposium On Process Systems Engineering 2009; 1773-8. https://doi.org/10.1016/S1570-7946(09)70686-8
  • [6] Kang SW and Tseng SC. Analysis of effectiveness and pressure drop in micro flow heat exchanger. Applied Thermal Engineering 2007; 27: 877-85. https://doi.org/10.1016/j.applthermaleng.2006.09.002
  • [7] Alm B, Imke U, Knitter R, Schygulla U, Zimmermann S. Testing and simulation of ceramic micro heat exchangers. Chemical Engineering Journal 2008;135: 179-84. https://doi.org/10.1016/j.cej.2007.07.005
  • [8] Hasan MI, Rageb AA, Yaghoubi M, Homayoni H. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences 2009; 48: 1607-18. https://doi.org/10.1016/j.ijthermalsci.2009.01.004
  • [9] Dang T, Teng JT, Chu JC. A study on the simulation and experiment of a microchannel counter-flow heat exchanger. Applied Thermal Engineering 2010; 30: 2163-72. https://doi.org/10.1016/j.applthermaleng.2010.05.029
  • [10] Mathew B, Hegab H. Experimental investigation of thermal model of parallel flow microchannel heat exchangers subjected to external heat flux. International Journal of Heat and Mass Transfer 2012; 55: 2193-9. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.024
  • [11] Hasan MI, Hasan HM, Abid GA. Study of the axial heat conduction in parallel flow microchannel heat exchanger. Journal of King Saud University Engineering Sciences 2014 ; 26: 122-31. https://doi.org/10.1016/j.jksues.2012.12.004
  • [12] Dixit T, Ghosh I. Theoretical and experimental studies of crossflow minichannel heat exchanger subjected to external heat ingress.Applied Thermal Engineering 2014; 73: 162-71. https://doi.org/10.1016/j.applthermaleng.2014.07.049
  • [13] Zhou F, Zhou W, Qiu Q, Yu W, Chu X. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger. Applied Thermal Engineering 2018; 137: 616-31. https://doi.org/10.1016/j.applthermaleng.2018.03.069
  • [14] Ling W, Zhou W, Yu W, Guo Z, Chen J. Effects of operation parameters on thermal and hydraulic performances of a novel interlaced microchannel. Applied Thermal Engineering 2019; 147:143-54. https://doi.org/10.1016/j.applthermaleng.2018.10.065
  • [15] Xu B, Ooi KT, Wong NT. Experimental investigation of flow friction for liquid flow in microchannels. Int. Comm. Heat Mass Transfer 2000; 27: 1165-76. https://doi.org/10.1016/S0735-1933(00)00203-7
  • [16] Peng XF, Peterson GP . Convective heat transfer and flow friction for water flow in microchannel structures. International journal of heat and mass transfer 1996; 39: 2599-608. https://doi.org/10.1016/0017-9310(95)00327-4
  • [17] Ozisik MN. Heat Transfer: A Basic Approach, McGraw-Hill, New York; 1985.
  • [18] Çengel YA, Cimbala JM. Fluid Mechanics, Fundamentals and Applications, McGraw-Hill, New York; 2003.
  • [19] Maynes D, Webb BW. Velocity profile characterization in sub-milimeter diameters tubes using molecular tagging velocimetry. Experiments in Fluids 2002; 32:3-15. https://doi.org/10.1007/s003480200001
  • [20] Bejan A. Heat Transfer, Wiley, Newyork; 1993.
  • [21] Fraas AP. Heat Exchanger Design, Wiley, New York;1989.
  • [22] White FM. Fluid Mechanics.7th Edition, McGraw- Hill, New York; 2011
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zeynep Küçükakça Meral This is me 0000-0002-4557-8004

Nezaket Parlak This is me 0000-0002-8469-2192

Publication Date February 1, 2021
Submission Date January 14, 2020
Published in Issue Year 2021

Cite

APA Küçükakça Meral, Z., & Parlak, N. (2021). EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER. Journal of Thermal Engineering, 7(2), 270-283. https://doi.org/10.18186/thermal.872366
AMA Küçükakça Meral Z, Parlak N. EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER. Journal of Thermal Engineering. February 2021;7(2):270-283. doi:10.18186/thermal.872366
Chicago Küçükakça Meral, Zeynep, and Nezaket Parlak. “EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER”. Journal of Thermal Engineering 7, no. 2 (February 2021): 270-83. https://doi.org/10.18186/thermal.872366.
EndNote Küçükakça Meral Z, Parlak N (February 1, 2021) EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER. Journal of Thermal Engineering 7 2 270–283.
IEEE Z. Küçükakça Meral and N. Parlak, “EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER”, Journal of Thermal Engineering, vol. 7, no. 2, pp. 270–283, 2021, doi: 10.18186/thermal.872366.
ISNAD Küçükakça Meral, Zeynep - Parlak, Nezaket. “EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER”. Journal of Thermal Engineering 7/2 (February 2021), 270-283. https://doi.org/10.18186/thermal.872366.
JAMA Küçükakça Meral Z, Parlak N. EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER. Journal of Thermal Engineering. 2021;7:270–283.
MLA Küçükakça Meral, Zeynep and Nezaket Parlak. “EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER”. Journal of Thermal Engineering, vol. 7, no. 2, 2021, pp. 270-83, doi:10.18186/thermal.872366.
Vancouver Küçükakça Meral Z, Parlak N. EXPERIMENTAL RESEARCH AND CFD SIMULATION OF CROSS FLOW MICROCHANNEL HEAT EXCHANGER. Journal of Thermal Engineering. 2021;7(2):270-83.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering