Research Article
BibTex RIS Cite
Year 2021, , 1000 - 1015, 01.05.2021
https://doi.org/10.18186/thermal.931352

Abstract

References

  • [1] Sohani A, Sayyaadi H, Zeraatpisheh M. Optimization strategy by a general approach to enhance improving potential of dew-point evaporative coolers. vol. 188. Elsevier; 2019. https://doi.org/10.1016/j.enconman.2019.02.079.
  • [2] Sohani A, Sayyaadi H, Mohammadhosseini N. Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. Energy Convers Manag 2018;158:327–45. https://doi.org/10.1016/j.enconman.2017.12.042.
  • [3] Sohani A, Sayyaadi H, Hoseinpoori S. Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network. Int J Refrig 2016;69:186–204. https://doi.org/10.1016/j.ijrefrig.2016.05.011.
  • [4] Xiao G, Wang X, Ni M. A review on solar stills for brine desalination. Appl Energy 2013;103:642–52. https://doi.org/10.1016/j.apenergy.2012.10.029.
  • [5] Tabrizi FF, Sharak AZ. Experimental study of an integrated basin solar still with a sandy heat reservoir. Desalination 2010;253:195–9. https://doi.org/10.1016/j.desal.2009.10.003.
  • [6] El-Ghonemy AMK. Water desalination systems powered by renewable energy sources: Review. Renew Sustain Energy Rev 2012;16:1537–56. https://doi.org/10.1016/j.rser.2011.11.002.
  • [7] Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy 2017;9. https://doi.org/10.1063/1.5000288.
  • [8] Sohani A, Sayyaadi H. Design and retrofit optimization of the cellulose evaporative cooling pad systems at diverse climatic conditions. Appl Therm Eng 2017;123:1396–418. https://doi.org/10.1016/j.applthermaleng.2017.05.120.
  • [9] Sohani A, Naderi S, Torabi F. Comprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cell. Energy Convers Manag 2019;191:247–60. https://doi.org/10.1016/j.enconman.2019.04.005.
  • [10] Ghasemiasl R, Hoseinzadeh S, Javadi MA. Numerical Analysis of Energy Storage Systems Using Two Phase-Change Materials with Nanoparticles. J Thermophys Heat Transf 2017;32:440–8. https://doi.org/10.2514/1.t5252.
  • [11] Samaulah H, Basir Y, Helmi M, Faturrizky F, Sugawara A. Efficiency Analysis of Tracking and Stationary Solar Panel Modes Against Solar Radiation. J Eng Sci 2018;5:23–8. https://doi.org/10.21272/jes.2018.5(1).h4.
  • [12] Hussein AK, A.A.Walun. Applications of nanotechnology to improve the performance of solar collectors - Recent advances and overview. J Therm Eng 2016;2:529–40. https://doi.org/10.1016/j.rser.2016.04.050.
  • [13] Al Qasaab MR, Abed QA, Abd Al-Wahid WA. Performance evaluation thermal efficiency for the parabolic collector with two types of absorber. 4th Sci. Int. Conf. Najaf, SICN 2019, 2019, p. 205–9. https://doi.org/10.1109/SICN47020.2019.9019339.
  • [14] Senthilkumar S, Perumal K, Srinivasan PSS. Optical and thermal performance of a three-dimensional compound parabolic concentrator for spherical absorber. Sadhana - Acad Proc Eng Sci 2009;34:369–80. https://doi.org/10.1007/s12046-009-0017-x.
  • [15] Abed QA, D. H. Al-Shamkhee, E.O. Al-Zaini. Experimental investigation of parabolic trough solar collector (PTC) performance for water desalination. 7th Int Conf Therm Equipment, Renew Energy Rural Dev 2018:21–32.
  • [16] Sytar VI, Sukhyy KM, Kabat OS, Nachovnyi II. Polymeric compositional materials based on polycarbonate for units of devices for transform solar into thermal energy. J Eng Sci 2017;4:1–7.
  • [17] Salim H, Sultan KF, Jawad R. Comparison between PID and Artificial Neural Networks to Control of Boiler for Steam Power Plant. J Eng Sci 2019;6:e10–5. https://doi.org/10.21272/jes.2019.6(1).e2.
  • [18] Stefanovic VP, Pavlovic SR, Bellos E, Tzivanidis C. A detailed parametric analysis of a solar dish collector. Sustain Energy Technol Assessments 2018;25:99–110. https://doi.org/10.1016/j.seta.2017.12.005.
  • [19] Javadi MA, Hoseinzadeh S, P. S. Heyns, Ghasemiasl R. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant M. J Therm Anal Calorim 2019. https://doi.org/10.1007/s12046-019-1102-4.
  • [20] Javadi MA, Hoseinzadeh S, Khalaji M, Ghasemiasl R. Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant. Sadhana - Acad Proc Eng Sci 2019;44. https://doi.org/10.1007/s12046-019-1102-4.
  • [21] Javadi MA, Ghomashi H. Thermodynamics analysis and optimization of Abadan combined cycle power plant. Indian J Sci Technol 2016;9:1–12. https://doi.org/10.17485/ijst/2016/v9i7/87770.
  • [22] Omara ZM, Eltawil MA. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 2013. https://doi.org/10.1016/j.desal.2013.07.019.
  • [23] Al-Naffakh J, Al-Fahham M, Al-Qasab MR. Improve and reduce the economic cost and pollutants of a swirl burner. IOP Conf Ser Mater Sci Eng 2020;928. https://doi.org/10.1088/1757-899X/928/2/022013.
  • [24] Al Qasab MR, Abed QA, Abd Al-Wahid WA, Al-Naffakh JT. Comparative investigation for solar thermal energy technologies system. J Phys Conf Ser 2019;1362. https://doi.org/10.1088/1742-6596/1362/1/012116.
  • [25] Fazel SAA, Sarafraz M, Shamsabadi AA, Peyghambarzadeh SM. Pool boiling heat transfer in diluted water/glycerol binary solutions. Heat Transf Eng 2013;34:828–37. https://doi.org/10.1080/01457632.2012.746157.
  • [26] Sarafraz MM. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J Appl Fluid Mech 2013;6:73–9.
  • [27] Peyghambarzadeh SM, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Ann Nucl Energy 2013;53:401–10. https://doi.org/10.1016/j.anucene.2012.07.037.
  • [28] Sarafraz MM, Peyghambarzadeh SM, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q 2012;18:315–27. https://doi.org/10.2298/ciceq111020008s.
  • [29] Sarafraz MM. Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf Und Stoffuebertragung 2012;48:611–9. https://doi.org/10.1007/s00231-011-0910-9.
  • [30] Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical Validation Heat Transfer of Rectangular Cross-Section Porous Fins. J Thermophys Heat Transf 2019:1–7. https://doi.org/10.2514/1.t5583.
  • [31] Al-shamkhi DMH. Thermal Losses Reduction for a Trough Collector : Part 2 Heat Transfer 2015;8:225–41.
  • [32] Arunkumar T, Denkenberger D, Velraj R, Sathyamurthy R, Tanaka H, Vinothkumar K. Experimental study on a parabolic concentrator assisted solar desalting system. Energy Convers Manag 2015;105:665–74. https://doi.org/10.1016/j.enconman.2015.08.021.
  • [33] Tanaka H, Nakatake Y. Outdoor experiments of a vertical diffusion solar still coupled with a flat plate reflector. Desalination 2007;214:70–82. https://doi.org/10.1016/j.desal.2006.08.016.
  • [34] Eldalil KMS. Improving the performance of solar still using vibratory harmonic effect. Desalination 2010;251:3–11. https://doi.org/10.1016/j.desal.2009.10.004.
  • [35] Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 2009;249:130–4. https://doi.org/10.1016/j.desal.2009.02.057.
  • [36] Chaouchi B, Zrelli A, Gabsi S. Desalination of brackish water by means of a parabolic solar concentrator. Desalination 2007;217:118–26. https://doi.org/10.1016/j.desal.2007.02.009.
  • [37] El-Sebaii AA, Yaghmour SJ, Al-Hazmi FS, Faidah AS, Al-Marzouki FM, Al-Ghamdi AA. Active single basin solar still with a sensible storage medium. Desalination 2009;249:699–706. https://doi.org/10.1016/j.desal.2009.02.060.
  • [38] Kannan R, Selvaganesan C, Vignesh M, Babu BR, Fuentes M, Vivar M, et al. Solar still with vapor adsorption basin: Performance analysis. Renew Energy 2014;62:258–64. https://doi.org/10.1016/j.renene.2013.07.018.
  • [39] Alaudeen A, Johnson K, Ganasundar P, Syed Abuthahir A, Srithar K. Study on stepped type basin in a solar still. J King Saud Univ - Eng Sci 2014;26:176–83. https://doi.org/10.1016/j.jksues.2013.05.002.
  • [40] Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination 2013;314:189–92. https://doi.org/10.1016/j.desal.2013.01.018.
  • [41] Mohammed AJ. New design of the stepped solar still. J Basrah Res 2013;39:1–8.
  • [42] Chaichan MT, Abaas KI, Kazem HA. Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers. Desalin Water Treat 2015;57:14897–907. https://doi.org/10.1080/19443994.2015.1069221.
  • [43] Velraj R., T.Ahsan, Amimul, Khalifa AJN, Shams S, Denkenberger D, et al. Effect of parabolic solar energy collectors for water distillation. Desalin Water Treat 2016;57:21234–42. https://doi.org/10.1080/19443994.2015.1119746.
  • [44] Abed FM, Kassim MS, Rahi MR. Performance improvement of a passive solar still in a water desalination. Int J Environ Sci Technol 2017;14:1277–84. https://doi.org/10.1007/s13762-016-1231-9.
  • [45] Prado GO, Vieira LGM, Damasceno JJR. Solar dish concentrator for desalting water. Sol Energy 2016:659–67. https://doi.org/10.1016/j.solener.2016.07.039.
  • [46] Chorak A, Palenzuela P, Alarcón-Padilla DC, Ben Abdellah A. Experimental characterization of a multi-effect distillation system coupled to a flat plate solar collector field: Empirical correlations. Appl Therm Eng 2017;120:298–313. https://doi.org/10.1016/j.applthermaleng.2017.03.115.
  • [47] Bahrami M, Madadi Avargani V, Bonyadi M. Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Appl Therm Eng 2019:77–89. https://doi.org/10.1016/j.applthermaleng.2019.01.103.
  • [48] Kazem HA, Chaichan MT. Status and future prospects of renewable energy in Iraq. Renew Sustain Energy Rev 2012:6007–12. https://doi.org/10.1016/j.rser.2012.03.058.
  • [49] Atlas GS. Solar resource maps of Iraq. Https://SolargisCom/Maps-and-Gis-Data/Download/Iraq 2019.
  • [50] Sahlani A Al, Eidan AA. Measurements of Wind and Solar Energies in Najaf , Iraq 2017:5–12.
  • [51] NEWTON CC. A Concentrated Solar Thermal Energy System. Florida State Univ Libr 2007:18–21.
  • [52] Hafez AZ, Soliman A, El-Metwally KA, Ismail IM. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy Convers Manag 2016;126:60–75. https://doi.org/10.1016/j.enconman.2016.07.067.
  • [53] Benli H. Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. Int J Heat Mass Transf 2013;60:1–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.042.
  • [54] Purohit I. Testing of solar cookers and evaluation of instrumentation error. Renew Energy 2010;35:2053–64. https://doi.org/10.1016/j.renene.2010.02.006.
  • [55] Rafeeu Y, Ab Kadir MZA. Thermal performance of parabolic concentrators under Malaysian environment: A case study. Renew Sustain Energy Rev 2012;16:3826–35. https://doi.org/10.1016/j.rser.2012.03.041.
  • [56] Duffie JA, Beckman WA. Solar engineering of thermal processes. John Wiley & Sons; 2013.
  • [57] Shuang Y, Xiao L, Cao Y, Li Y. A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Appl Energy 2010;87:452–62. https://doi.org/10.1016/j.apenergy.2009.08.041.
  • [58] Velmurugan V, Naveen Kumar KJ, Noorul Haq T, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy 2009;34:1179–86. https://doi.org/10.1016/j.energy.2009.04.029.
  • [59] El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy 2009;86:1187–95. https://doi.org/10.1016/j.apenergy.2008.10.014.
  • [60] Central Bank of Iraq (CBI) report 2018. Http://WwwCositGovIq/Documents/Indices/CPI/DOLLAR/Tables/Dollar%20%202018Xls n.d.:http://www.cosit.gov.iq/documents/indices/CPI/DOLL.
  • [61] Jaluria Y. Design and optimization of thermal systems. Mech Eng 2007;second edi:398-401.
  • [62] Shatat M, Worall M, Riffat S. Economic study for an affordable small scale solar water desalination system in remote and semi-arid region. Renew Sustain Energy Rev 2013;25:543–51. https://doi.org/10.1016/j.rser.2013.05.026.
  • [63] Solbakken K, Babar B, Boström T. Correlation of wind and solar power in high-latitude arctic areas in Northern Norway and Svalbard. Renew Energy Environ Sustain 2016;1:42. https://doi.org/10.1051/rees/2016027.
  • [64] Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Sol Energy 2016;130:207–23. https://doi.org/10.1016/j.solener.2016.02.024.

ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL

Year 2021, , 1000 - 1015, 01.05.2021
https://doi.org/10.18186/thermal.931352

Abstract

Water desalination is the method of saltwater separating into two parts by using various types of energy. This paper offers an experimental work for solar distillation system to the production of drinking water by single slope solar still integrated with a parabolic dish. The result was compared with different solar still designs in the literature. The proposed solar thermal performance of the suggested solar still has been investigated to show its applicability in Iraq, Najaf (32.1No, 44.19Eo) during winter session (Nov., Dec., Jan.) 2018-2019. The assessment based on the effects of operational parameters, including solar irradiance, ambient temperature, wind speed, absorption wall temperature. A copper helical conical coil was used to compare steam condensation generated from the evaporator. The productivity of this study was 11.45 L.day-1, 8.2 L.day-1 freshwater with and without coil condenser respectively, and average direct solar irradiance was 753.6 W.m-2. Comparison different types of solar stills, especially those that have used as concentrators of solar irradiance, with comparable periods of work time, indicate excellent performance. Also, this system can be considered acceptable because it can provide distilled water from the use of materials available in local markets and low cost, enough to cover the daily needs of water for at least two adults.

References

  • [1] Sohani A, Sayyaadi H, Zeraatpisheh M. Optimization strategy by a general approach to enhance improving potential of dew-point evaporative coolers. vol. 188. Elsevier; 2019. https://doi.org/10.1016/j.enconman.2019.02.079.
  • [2] Sohani A, Sayyaadi H, Mohammadhosseini N. Comparative study of the conventional types of heat and mass exchangers to achieve the best design of dew point evaporative coolers at diverse climatic conditions. Energy Convers Manag 2018;158:327–45. https://doi.org/10.1016/j.enconman.2017.12.042.
  • [3] Sohani A, Sayyaadi H, Hoseinpoori S. Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network. Int J Refrig 2016;69:186–204. https://doi.org/10.1016/j.ijrefrig.2016.05.011.
  • [4] Xiao G, Wang X, Ni M. A review on solar stills for brine desalination. Appl Energy 2013;103:642–52. https://doi.org/10.1016/j.apenergy.2012.10.029.
  • [5] Tabrizi FF, Sharak AZ. Experimental study of an integrated basin solar still with a sandy heat reservoir. Desalination 2010;253:195–9. https://doi.org/10.1016/j.desal.2009.10.003.
  • [6] El-Ghonemy AMK. Water desalination systems powered by renewable energy sources: Review. Renew Sustain Energy Rev 2012;16:1537–56. https://doi.org/10.1016/j.rser.2011.11.002.
  • [7] Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy 2017;9. https://doi.org/10.1063/1.5000288.
  • [8] Sohani A, Sayyaadi H. Design and retrofit optimization of the cellulose evaporative cooling pad systems at diverse climatic conditions. Appl Therm Eng 2017;123:1396–418. https://doi.org/10.1016/j.applthermaleng.2017.05.120.
  • [9] Sohani A, Naderi S, Torabi F. Comprehensive comparative evaluation of different possible optimization scenarios for a polymer electrolyte membrane fuel cell. Energy Convers Manag 2019;191:247–60. https://doi.org/10.1016/j.enconman.2019.04.005.
  • [10] Ghasemiasl R, Hoseinzadeh S, Javadi MA. Numerical Analysis of Energy Storage Systems Using Two Phase-Change Materials with Nanoparticles. J Thermophys Heat Transf 2017;32:440–8. https://doi.org/10.2514/1.t5252.
  • [11] Samaulah H, Basir Y, Helmi M, Faturrizky F, Sugawara A. Efficiency Analysis of Tracking and Stationary Solar Panel Modes Against Solar Radiation. J Eng Sci 2018;5:23–8. https://doi.org/10.21272/jes.2018.5(1).h4.
  • [12] Hussein AK, A.A.Walun. Applications of nanotechnology to improve the performance of solar collectors - Recent advances and overview. J Therm Eng 2016;2:529–40. https://doi.org/10.1016/j.rser.2016.04.050.
  • [13] Al Qasaab MR, Abed QA, Abd Al-Wahid WA. Performance evaluation thermal efficiency for the parabolic collector with two types of absorber. 4th Sci. Int. Conf. Najaf, SICN 2019, 2019, p. 205–9. https://doi.org/10.1109/SICN47020.2019.9019339.
  • [14] Senthilkumar S, Perumal K, Srinivasan PSS. Optical and thermal performance of a three-dimensional compound parabolic concentrator for spherical absorber. Sadhana - Acad Proc Eng Sci 2009;34:369–80. https://doi.org/10.1007/s12046-009-0017-x.
  • [15] Abed QA, D. H. Al-Shamkhee, E.O. Al-Zaini. Experimental investigation of parabolic trough solar collector (PTC) performance for water desalination. 7th Int Conf Therm Equipment, Renew Energy Rural Dev 2018:21–32.
  • [16] Sytar VI, Sukhyy KM, Kabat OS, Nachovnyi II. Polymeric compositional materials based on polycarbonate for units of devices for transform solar into thermal energy. J Eng Sci 2017;4:1–7.
  • [17] Salim H, Sultan KF, Jawad R. Comparison between PID and Artificial Neural Networks to Control of Boiler for Steam Power Plant. J Eng Sci 2019;6:e10–5. https://doi.org/10.21272/jes.2019.6(1).e2.
  • [18] Stefanovic VP, Pavlovic SR, Bellos E, Tzivanidis C. A detailed parametric analysis of a solar dish collector. Sustain Energy Technol Assessments 2018;25:99–110. https://doi.org/10.1016/j.seta.2017.12.005.
  • [19] Javadi MA, Hoseinzadeh S, P. S. Heyns, Ghasemiasl R. Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant M. J Therm Anal Calorim 2019. https://doi.org/10.1007/s12046-019-1102-4.
  • [20] Javadi MA, Hoseinzadeh S, Khalaji M, Ghasemiasl R. Optimization and analysis of exergy, economic, and environmental of a combined cycle power plant. Sadhana - Acad Proc Eng Sci 2019;44. https://doi.org/10.1007/s12046-019-1102-4.
  • [21] Javadi MA, Ghomashi H. Thermodynamics analysis and optimization of Abadan combined cycle power plant. Indian J Sci Technol 2016;9:1–12. https://doi.org/10.17485/ijst/2016/v9i7/87770.
  • [22] Omara ZM, Eltawil MA. Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination. Desalination 2013. https://doi.org/10.1016/j.desal.2013.07.019.
  • [23] Al-Naffakh J, Al-Fahham M, Al-Qasab MR. Improve and reduce the economic cost and pollutants of a swirl burner. IOP Conf Ser Mater Sci Eng 2020;928. https://doi.org/10.1088/1757-899X/928/2/022013.
  • [24] Al Qasab MR, Abed QA, Abd Al-Wahid WA, Al-Naffakh JT. Comparative investigation for solar thermal energy technologies system. J Phys Conf Ser 2019;1362. https://doi.org/10.1088/1742-6596/1362/1/012116.
  • [25] Fazel SAA, Sarafraz M, Shamsabadi AA, Peyghambarzadeh SM. Pool boiling heat transfer in diluted water/glycerol binary solutions. Heat Transf Eng 2013;34:828–37. https://doi.org/10.1080/01457632.2012.746157.
  • [26] Sarafraz MM. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. J Appl Fluid Mech 2013;6:73–9.
  • [27] Peyghambarzadeh SM, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Ann Nucl Energy 2013;53:401–10. https://doi.org/10.1016/j.anucene.2012.07.037.
  • [28] Sarafraz MM, Peyghambarzadeh SM, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q 2012;18:315–27. https://doi.org/10.2298/ciceq111020008s.
  • [29] Sarafraz MM. Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf Und Stoffuebertragung 2012;48:611–9. https://doi.org/10.1007/s00231-011-0910-9.
  • [30] Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical Validation Heat Transfer of Rectangular Cross-Section Porous Fins. J Thermophys Heat Transf 2019:1–7. https://doi.org/10.2514/1.t5583.
  • [31] Al-shamkhi DMH. Thermal Losses Reduction for a Trough Collector : Part 2 Heat Transfer 2015;8:225–41.
  • [32] Arunkumar T, Denkenberger D, Velraj R, Sathyamurthy R, Tanaka H, Vinothkumar K. Experimental study on a parabolic concentrator assisted solar desalting system. Energy Convers Manag 2015;105:665–74. https://doi.org/10.1016/j.enconman.2015.08.021.
  • [33] Tanaka H, Nakatake Y. Outdoor experiments of a vertical diffusion solar still coupled with a flat plate reflector. Desalination 2007;214:70–82. https://doi.org/10.1016/j.desal.2006.08.016.
  • [34] Eldalil KMS. Improving the performance of solar still using vibratory harmonic effect. Desalination 2010;251:3–11. https://doi.org/10.1016/j.desal.2009.10.004.
  • [35] Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination 2009;249:130–4. https://doi.org/10.1016/j.desal.2009.02.057.
  • [36] Chaouchi B, Zrelli A, Gabsi S. Desalination of brackish water by means of a parabolic solar concentrator. Desalination 2007;217:118–26. https://doi.org/10.1016/j.desal.2007.02.009.
  • [37] El-Sebaii AA, Yaghmour SJ, Al-Hazmi FS, Faidah AS, Al-Marzouki FM, Al-Ghamdi AA. Active single basin solar still with a sensible storage medium. Desalination 2009;249:699–706. https://doi.org/10.1016/j.desal.2009.02.060.
  • [38] Kannan R, Selvaganesan C, Vignesh M, Babu BR, Fuentes M, Vivar M, et al. Solar still with vapor adsorption basin: Performance analysis. Renew Energy 2014;62:258–64. https://doi.org/10.1016/j.renene.2013.07.018.
  • [39] Alaudeen A, Johnson K, Ganasundar P, Syed Abuthahir A, Srithar K. Study on stepped type basin in a solar still. J King Saud Univ - Eng Sci 2014;26:176–83. https://doi.org/10.1016/j.jksues.2013.05.002.
  • [40] Arunkumar T, Denkenberger D, Ahsan A, Jayaprakash R. The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination 2013;314:189–92. https://doi.org/10.1016/j.desal.2013.01.018.
  • [41] Mohammed AJ. New design of the stepped solar still. J Basrah Res 2013;39:1–8.
  • [42] Chaichan MT, Abaas KI, Kazem HA. Design and assessment of solar concentrator distillating system using phase change materials (PCM) suitable for desertic weathers. Desalin Water Treat 2015;57:14897–907. https://doi.org/10.1080/19443994.2015.1069221.
  • [43] Velraj R., T.Ahsan, Amimul, Khalifa AJN, Shams S, Denkenberger D, et al. Effect of parabolic solar energy collectors for water distillation. Desalin Water Treat 2016;57:21234–42. https://doi.org/10.1080/19443994.2015.1119746.
  • [44] Abed FM, Kassim MS, Rahi MR. Performance improvement of a passive solar still in a water desalination. Int J Environ Sci Technol 2017;14:1277–84. https://doi.org/10.1007/s13762-016-1231-9.
  • [45] Prado GO, Vieira LGM, Damasceno JJR. Solar dish concentrator for desalting water. Sol Energy 2016:659–67. https://doi.org/10.1016/j.solener.2016.07.039.
  • [46] Chorak A, Palenzuela P, Alarcón-Padilla DC, Ben Abdellah A. Experimental characterization of a multi-effect distillation system coupled to a flat plate solar collector field: Empirical correlations. Appl Therm Eng 2017;120:298–313. https://doi.org/10.1016/j.applthermaleng.2017.03.115.
  • [47] Bahrami M, Madadi Avargani V, Bonyadi M. Comprehensive experimental and theoretical study of a novel still coupled to a solar dish concentrator. Appl Therm Eng 2019:77–89. https://doi.org/10.1016/j.applthermaleng.2019.01.103.
  • [48] Kazem HA, Chaichan MT. Status and future prospects of renewable energy in Iraq. Renew Sustain Energy Rev 2012:6007–12. https://doi.org/10.1016/j.rser.2012.03.058.
  • [49] Atlas GS. Solar resource maps of Iraq. Https://SolargisCom/Maps-and-Gis-Data/Download/Iraq 2019.
  • [50] Sahlani A Al, Eidan AA. Measurements of Wind and Solar Energies in Najaf , Iraq 2017:5–12.
  • [51] NEWTON CC. A Concentrated Solar Thermal Energy System. Florida State Univ Libr 2007:18–21.
  • [52] Hafez AZ, Soliman A, El-Metwally KA, Ismail IM. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy Convers Manag 2016;126:60–75. https://doi.org/10.1016/j.enconman.2016.07.067.
  • [53] Benli H. Determination of thermal performance calculation of two different types solar air collectors with the use of artificial neural networks. Int J Heat Mass Transf 2013;60:1–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.042.
  • [54] Purohit I. Testing of solar cookers and evaluation of instrumentation error. Renew Energy 2010;35:2053–64. https://doi.org/10.1016/j.renene.2010.02.006.
  • [55] Rafeeu Y, Ab Kadir MZA. Thermal performance of parabolic concentrators under Malaysian environment: A case study. Renew Sustain Energy Rev 2012;16:3826–35. https://doi.org/10.1016/j.rser.2012.03.041.
  • [56] Duffie JA, Beckman WA. Solar engineering of thermal processes. John Wiley & Sons; 2013.
  • [57] Shuang Y, Xiao L, Cao Y, Li Y. A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Appl Energy 2010;87:452–62. https://doi.org/10.1016/j.apenergy.2009.08.041.
  • [58] Velmurugan V, Naveen Kumar KJ, Noorul Haq T, Srithar K. Performance analysis in stepped solar still for effluent desalination. Energy 2009;34:1179–86. https://doi.org/10.1016/j.energy.2009.04.029.
  • [59] El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS. Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy 2009;86:1187–95. https://doi.org/10.1016/j.apenergy.2008.10.014.
  • [60] Central Bank of Iraq (CBI) report 2018. Http://WwwCositGovIq/Documents/Indices/CPI/DOLLAR/Tables/Dollar%20%202018Xls n.d.:http://www.cosit.gov.iq/documents/indices/CPI/DOLL.
  • [61] Jaluria Y. Design and optimization of thermal systems. Mech Eng 2007;second edi:398-401.
  • [62] Shatat M, Worall M, Riffat S. Economic study for an affordable small scale solar water desalination system in remote and semi-arid region. Renew Sustain Energy Rev 2013;25:543–51. https://doi.org/10.1016/j.rser.2013.05.026.
  • [63] Solbakken K, Babar B, Boström T. Correlation of wind and solar power in high-latitude arctic areas in Northern Norway and Svalbard. Renew Energy Environ Sustain 2016;1:42. https://doi.org/10.1051/rees/2016027.
  • [64] Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Sol Energy 2016;130:207–23. https://doi.org/10.1016/j.solener.2016.02.024.
There are 64 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mohammed R. Al_qasaab This is me 0000-0001-5788-970X

Qahtan A. Abed This is me 0000-0003-4501-6869

Wisam A. Abd Al-wahid This is me 0000-0003-1865-6190

Publication Date May 1, 2021
Submission Date June 6, 2019
Published in Issue Year 2021

Cite

APA Al_qasaab, M. R., Abed, Q. A., & Abd Al-wahid, W. A. (2021). ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering, 7(4), 1000-1015. https://doi.org/10.18186/thermal.931352
AMA Al_qasaab MR, Abed QA, Abd Al-wahid WA. ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering. May 2021;7(4):1000-1015. doi:10.18186/thermal.931352
Chicago Al_qasaab, Mohammed R., Qahtan A. Abed, and Wisam A. Abd Al-wahid. “ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL”. Journal of Thermal Engineering 7, no. 4 (May 2021): 1000-1015. https://doi.org/10.18186/thermal.931352.
EndNote Al_qasaab MR, Abed QA, Abd Al-wahid WA (May 1, 2021) ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering 7 4 1000–1015.
IEEE M. R. Al_qasaab, Q. A. Abed, and W. A. Abd Al-wahid, “ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL”, Journal of Thermal Engineering, vol. 7, no. 4, pp. 1000–1015, 2021, doi: 10.18186/thermal.931352.
ISNAD Al_qasaab, Mohammed R. et al. “ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL”. Journal of Thermal Engineering 7/4 (May 2021), 1000-1015. https://doi.org/10.18186/thermal.931352.
JAMA Al_qasaab MR, Abed QA, Abd Al-wahid WA. ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering. 2021;7:1000–1015.
MLA Al_qasaab, Mohammed R. et al. “ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL”. Journal of Thermal Engineering, vol. 7, no. 4, 2021, pp. 1000-15, doi:10.18186/thermal.931352.
Vancouver Al_qasaab MR, Abed QA, Abd Al-wahid WA. ENHANCEMENT THE SOLAR DISTILLER WATER BY USING PARABOLIC DISH COLLECTOR WITH SINGLE SLOPE SOLAR STILL. Journal of Thermal Engineering. 2021;7(4):1000-15.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering