Research Article
BibTex RIS Cite
Year 2021, , 1479 - 1488, 02.09.2021
https://doi.org/10.18186/thermal.990872

Abstract

References

  • [1] Ilicali, C, Cetin, M, Cetin, S. Methods for freezing and thawing of ellipses. J food Eng 1996;28:361-372. https://doi.org/10.1016/0260-8774(95)00067-4.
  • [2] Voller, VR, Cross, M. Estimating the solidification/melting times cylindrically symmetric regions. Int J Heat Mass Transf 1981;24:1457-1462. https://doi.org/10.1016/0017-9310(81)90213-1.
  • [3] Fikiin, KA. Generalized numerical modelling of unsteady heat transfer during cooling and freezing using an improved enthalpy method and quasi-one-dimensional formulation. Int J Ref 1996;19:132-140. https://doi.org/10.1016/0140-7007(95)00055-0.
  • [4] Pham, Q, T. Shape factors for the freezing time of ellipses and ellipsoids. J Food Eng 1991;13:159-170. https://doi.org/10.1016/0260-8774(91)90024-M.
  • [5] Teggar, M, Mezaache, E, Benchatti, A, Zeghmati B. Comparative study of heat transfer during solidification of phase change materials inside three different capsules. Int J heat Techn 2010;28(2):19-23. https://doi.org/10.18280/ijht.280204.
  • [6] Shokouhmand, C, Kamkari, B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Exp Therm Fluid Sci 2013;50:201–212, http://dx.doi.org/10.1016/j.expthermflusci.2013.06.010.
  • [7] Arıcı, M, Tütüncü, E, Kan, M, Karabay, H. Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls, Int J Heat Mass Transf 2017;104: 7–17. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.017.
  • [8] Bondareva, NS, Sheremet, MA. Numerical simulation of natural convection melting in 2D and 3D enclosures, J Therm Eng 2019;5(1):51-61. DOI: 10.18186/thermal.513015.
  • [9] Ismail, K, Henrıquez, J. Numerical and experimental study of spherical capsules packed bed latent heat storage system, App Therm Eng 2002;22:1705–1716, https://doi.org/10.1016/S1359-4311(02)00080-7.
  • [10] Ismail, KAR, Fátima, L, Raquel S, Antonio, J, Louryval P. Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube, Int J Therm Sci 2014;75:184-193, http://dx.doi.org/10.1016/j.ijthermalsci.2013.08.008.
  • [11] Saitoh, T, Hirose, K. High Rayleigh number solutions to problems of latent heat thermal energy storage in a horizontal cylinder capsule. J Heat Trans 1982;104:545-553. https://doi.org/10.1115/1.3245128.
  • [12] Bareiss, M, Beer, H. An analytical solution of heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Transf 1984;27:739–46. https://doi.org/10.1016/0017-9310(84)90143-1.
  • [13] Prasad, A, Sengupta, S. Numerical investigation of melting inside a horizontal cylinder including the effect of natural convection. J Heat Transf 1987;109:803–806. https://doi.org/10.1115/1.3248165.
  • [14] Nicholas, D, Bayazitoglu, Y. Heat transfer and melting front within a horizontal cylinder. J Sol Energ Eng 1980;102:229–32. https://doi.org/10.1115/1.3266160.
  • [15] Dhaidan, N, Khalaf, A. Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell, Int Comm Heat Mass Transf 2020;111;104476. https://doi.org/10.1016/j.icheatmasstransfer.2020.104476.
  • [16] Iachachene F, Haddad, Z, Hakan, O, Abu-Nada, E. Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects, Journal of Molecular Liquids 2019;292:11059. https://doi.org/10.1016/j.molliq.2019.03.051.
  • [17] Hosseinzadeh, K, Mogharrebi, A, Asadi, A, Paikar, M, Ganji, D. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent Heat Thermal Energy Storage System, J Molec Liq 2020;300:112347. https://doi.org/10.1016/j.molliq.2019.112347.
  • [18] Chen, WZ, Yang, QS, Dai, MQ, Cheng, SM. An analytical solution of the heat transfer process during contact melting of phase change material inside a horizontal elliptical tube. Int J Energ 1998;22(2): 131-140. https://doi.org/10.1002/(SICI)1099-114X(199802)22:2<131::AID-ER345>3.0.CO;2-3.
  • [19] Fomin, SA, Wilchinsky, A. Shape-factor effect on melting in an elliptic capsule. Int J Heat Mass Transf 2002;45(14): 3045–3054. https://doi.org/10.1016/S0017-9310(02)00018-2.
  • [20] Chung, JD, Lee, JS, Yoo, H. Thermal instability during the melting process in an isothermally heated horizontal cylinder. Int J Heat Mass Transf 1997;40(16):3899–3907. https://doi.org/10.1016/S0017-9310(97)00037-9
  • [21] Alawadhi, E. A solidification process with free convection of water in an elliptical enclosure. Energ Conv and Manag 2009;50(2):360–364. https://doi.org/10.1016/j.enconman.2008.09.015.
  • [22] Jourabian, M, Farhadi, M, Darzi, AR. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix. Theor Comput Fluid Dynam 2016;30: 579–603. https://doi.org/10.1007/s00162-016-0402-0.
  • [23] Darzi, AR, Farhadi, M, Sedighi, K. Numerical study of melting inside concentric and eccentric horizontal annulus. App Math Model 2012;36(9): 4080-86. https://doi.org/10.1016/j.apm.2011.11.033.
  • [24] Brent, AD, Voller, VR, Reid, KJ. () Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Num Heat Transf 1988;13:297–318. https://doi.org/10.1080/10407788808913615.
  • [25] Kozak, Y, Ziskind, G. Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase. Int J Heat Mass Transf 2017112: 568–586. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.088.
  • [26] Hosseinizadeh, S, Rabienataj, R, Darzi A, Tan, L. () Unconstrained melting inside a sphere, Int J Therm Sci 2013;63:55-64. https://doi.org/10.1016/j.ijthermalsci.2012.07.012.
  • [27] Faden, M, König-Haagen, A, Höhlein, S, Brüggemann, D. An implicit algorithm for melting and settling of phase change material inside macrocapsules. Int J Heat Mass Transf 2018;117: 757–767. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.033.
  • [28] Sparrow, EM, Geiger, GT. Melting in a horizontal tube with the solid either constrained or free to fall under gravity. Int J Heat Mass Transf 1986;29:1007–1016. https://doi.org/10.1016/0017-9310(86)90200-0.
  • [29] Hlimi, M, Hamdaoui, S, Mahdaoui, M, Kousksou, T, Ait Msaad, A, Jamil, A, El Bouardi, A. Melting inside a horizontal cylindrical capsule. Case studThermal Eng 2016;8: 359-369. https://doi.org/10.1016/j.csite.2016.10.001.
  • [30] Prasad, A, Sengupta, S. Nusselt number and melt time correlations for melting inside a horizontal cylinder subjected to an isothermal wall temperature condition. J Heat Transf 1988;110, 340–345. https://doi.org/10.1115/1.3268277.
  • [31] ANSYS, 2013, ANSYS FLUENT Theory Guide, Release 15.0, ANSYS Inc.
  • [32] Assis, E, Katsman, L, Ziskind, G, Letan, R. Numerical and experimental study of melting in a spherical shell, Int J Heat Mass Transf 2007;50, 1790–1804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007.
  • [33] Hannoun, N, Alexiades, V, Mai, TZ. A reference solution for phase change with convection. International Journal for Numerical Methods in Fluids. 2005;48:1283–1308. https://doi.org/10.1002/fld.979.
  • [34] Chunjian, P, Joshua, C, Natasha, V, Carlos, R, Sudhakar, N, Ying, Z, Chien-Hua, C, Richard B. Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects. Int J Heat Mass Transf 2018;124:1015–1024. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.009.
  • [35] Hirata, T, Nishida, K. An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder. Int J Heat Mass Transf 1989;32:1663–1670. https://doi.org/10.1016/0017-9310(89)90049-5.
  • [36] Jourabian, M, Farhadi, M, Sedighi, K, Darzi, AR, Vazifeshenas, Y. Melting of NEPCM within a Cylindrical Tube: Numerical study using the Lattice Boltzmann method. Num Heat Transf Part A: Applications 2012;61:929–948. DOI: 10.1080/10407782.2012.677375.
  • [37] Park, CE, Kim, SS, Chang, KS. Branching solutions to inward melting problem in a horizontal tube. Int Commun Heat Mass Transf 1991:18:343–350. https://doi.org/10.1016/j.csite.2016.10.001.
  • [38] Ho, C, J, Viskanta, R. Heat transfer during inward melting in a horizontal tube. Int J Heat Mass Transf 1984;27:705–716. https://doi.org/10.1016/0017-9310(84)90140-6.

Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems

Year 2021, , 1479 - 1488, 02.09.2021
https://doi.org/10.18186/thermal.990872

Abstract

Encapsulation of Phase Change Materials (PCM) for energy storage, thermal comfort and many other energy applications is receiving much attention due to the fact that material, physical characteristics and geometry of the container can affect drastically the thermal performance of the PCM. Phase change materials have usually low thermal conductivity which impairs their thermal charging and discharging characteristics. Different geometries were investigated including rectangular, cylindrical and spherical with and without extended surfaces to investigate the heat charge processes. Cylindrical geometries of circular sections were intensively investigated while cylinders and tubes with elliptic and elongated cross section received less attention, although they may have better thermal performance for thermal storage.
The present numerical investigation is aimed at contributing to better understand the effects of the elliptic geometry and how the different geometrical and operational parameters can affect the thermal performance of the enclosed PCM. The present investigation reports the results of a numerical study on elliptic cylinders containing PCM under melting conditions. The 2D inward melting problem is modeled by using a CFD code. The numerical model is based upon the enthalpy-porosity method along with the finite control volume techniques. The numerical predictions are validated against available experimental results. The inward melting process is analyzed for two orientations of the elliptic enclosures. Due to the flow field effect namely the Rayleigh-Bénard convection, the numerical results showed that the horizontal elliptic enclosure have higher melting rate and hence lower total melting time compared to those of the vertical elliptic enclosure.

References

  • [1] Ilicali, C, Cetin, M, Cetin, S. Methods for freezing and thawing of ellipses. J food Eng 1996;28:361-372. https://doi.org/10.1016/0260-8774(95)00067-4.
  • [2] Voller, VR, Cross, M. Estimating the solidification/melting times cylindrically symmetric regions. Int J Heat Mass Transf 1981;24:1457-1462. https://doi.org/10.1016/0017-9310(81)90213-1.
  • [3] Fikiin, KA. Generalized numerical modelling of unsteady heat transfer during cooling and freezing using an improved enthalpy method and quasi-one-dimensional formulation. Int J Ref 1996;19:132-140. https://doi.org/10.1016/0140-7007(95)00055-0.
  • [4] Pham, Q, T. Shape factors for the freezing time of ellipses and ellipsoids. J Food Eng 1991;13:159-170. https://doi.org/10.1016/0260-8774(91)90024-M.
  • [5] Teggar, M, Mezaache, E, Benchatti, A, Zeghmati B. Comparative study of heat transfer during solidification of phase change materials inside three different capsules. Int J heat Techn 2010;28(2):19-23. https://doi.org/10.18280/ijht.280204.
  • [6] Shokouhmand, C, Kamkari, B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Exp Therm Fluid Sci 2013;50:201–212, http://dx.doi.org/10.1016/j.expthermflusci.2013.06.010.
  • [7] Arıcı, M, Tütüncü, E, Kan, M, Karabay, H. Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls, Int J Heat Mass Transf 2017;104: 7–17. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.017.
  • [8] Bondareva, NS, Sheremet, MA. Numerical simulation of natural convection melting in 2D and 3D enclosures, J Therm Eng 2019;5(1):51-61. DOI: 10.18186/thermal.513015.
  • [9] Ismail, K, Henrıquez, J. Numerical and experimental study of spherical capsules packed bed latent heat storage system, App Therm Eng 2002;22:1705–1716, https://doi.org/10.1016/S1359-4311(02)00080-7.
  • [10] Ismail, KAR, Fátima, L, Raquel S, Antonio, J, Louryval P. Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube, Int J Therm Sci 2014;75:184-193, http://dx.doi.org/10.1016/j.ijthermalsci.2013.08.008.
  • [11] Saitoh, T, Hirose, K. High Rayleigh number solutions to problems of latent heat thermal energy storage in a horizontal cylinder capsule. J Heat Trans 1982;104:545-553. https://doi.org/10.1115/1.3245128.
  • [12] Bareiss, M, Beer, H. An analytical solution of heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Transf 1984;27:739–46. https://doi.org/10.1016/0017-9310(84)90143-1.
  • [13] Prasad, A, Sengupta, S. Numerical investigation of melting inside a horizontal cylinder including the effect of natural convection. J Heat Transf 1987;109:803–806. https://doi.org/10.1115/1.3248165.
  • [14] Nicholas, D, Bayazitoglu, Y. Heat transfer and melting front within a horizontal cylinder. J Sol Energ Eng 1980;102:229–32. https://doi.org/10.1115/1.3266160.
  • [15] Dhaidan, N, Khalaf, A. Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell, Int Comm Heat Mass Transf 2020;111;104476. https://doi.org/10.1016/j.icheatmasstransfer.2020.104476.
  • [16] Iachachene F, Haddad, Z, Hakan, O, Abu-Nada, E. Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects, Journal of Molecular Liquids 2019;292:11059. https://doi.org/10.1016/j.molliq.2019.03.051.
  • [17] Hosseinzadeh, K, Mogharrebi, A, Asadi, A, Paikar, M, Ganji, D. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent Heat Thermal Energy Storage System, J Molec Liq 2020;300:112347. https://doi.org/10.1016/j.molliq.2019.112347.
  • [18] Chen, WZ, Yang, QS, Dai, MQ, Cheng, SM. An analytical solution of the heat transfer process during contact melting of phase change material inside a horizontal elliptical tube. Int J Energ 1998;22(2): 131-140. https://doi.org/10.1002/(SICI)1099-114X(199802)22:2<131::AID-ER345>3.0.CO;2-3.
  • [19] Fomin, SA, Wilchinsky, A. Shape-factor effect on melting in an elliptic capsule. Int J Heat Mass Transf 2002;45(14): 3045–3054. https://doi.org/10.1016/S0017-9310(02)00018-2.
  • [20] Chung, JD, Lee, JS, Yoo, H. Thermal instability during the melting process in an isothermally heated horizontal cylinder. Int J Heat Mass Transf 1997;40(16):3899–3907. https://doi.org/10.1016/S0017-9310(97)00037-9
  • [21] Alawadhi, E. A solidification process with free convection of water in an elliptical enclosure. Energ Conv and Manag 2009;50(2):360–364. https://doi.org/10.1016/j.enconman.2008.09.015.
  • [22] Jourabian, M, Farhadi, M, Darzi, AR. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix. Theor Comput Fluid Dynam 2016;30: 579–603. https://doi.org/10.1007/s00162-016-0402-0.
  • [23] Darzi, AR, Farhadi, M, Sedighi, K. Numerical study of melting inside concentric and eccentric horizontal annulus. App Math Model 2012;36(9): 4080-86. https://doi.org/10.1016/j.apm.2011.11.033.
  • [24] Brent, AD, Voller, VR, Reid, KJ. () Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Num Heat Transf 1988;13:297–318. https://doi.org/10.1080/10407788808913615.
  • [25] Kozak, Y, Ziskind, G. Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase. Int J Heat Mass Transf 2017112: 568–586. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.088.
  • [26] Hosseinizadeh, S, Rabienataj, R, Darzi A, Tan, L. () Unconstrained melting inside a sphere, Int J Therm Sci 2013;63:55-64. https://doi.org/10.1016/j.ijthermalsci.2012.07.012.
  • [27] Faden, M, König-Haagen, A, Höhlein, S, Brüggemann, D. An implicit algorithm for melting and settling of phase change material inside macrocapsules. Int J Heat Mass Transf 2018;117: 757–767. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.033.
  • [28] Sparrow, EM, Geiger, GT. Melting in a horizontal tube with the solid either constrained or free to fall under gravity. Int J Heat Mass Transf 1986;29:1007–1016. https://doi.org/10.1016/0017-9310(86)90200-0.
  • [29] Hlimi, M, Hamdaoui, S, Mahdaoui, M, Kousksou, T, Ait Msaad, A, Jamil, A, El Bouardi, A. Melting inside a horizontal cylindrical capsule. Case studThermal Eng 2016;8: 359-369. https://doi.org/10.1016/j.csite.2016.10.001.
  • [30] Prasad, A, Sengupta, S. Nusselt number and melt time correlations for melting inside a horizontal cylinder subjected to an isothermal wall temperature condition. J Heat Transf 1988;110, 340–345. https://doi.org/10.1115/1.3268277.
  • [31] ANSYS, 2013, ANSYS FLUENT Theory Guide, Release 15.0, ANSYS Inc.
  • [32] Assis, E, Katsman, L, Ziskind, G, Letan, R. Numerical and experimental study of melting in a spherical shell, Int J Heat Mass Transf 2007;50, 1790–1804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007.
  • [33] Hannoun, N, Alexiades, V, Mai, TZ. A reference solution for phase change with convection. International Journal for Numerical Methods in Fluids. 2005;48:1283–1308. https://doi.org/10.1002/fld.979.
  • [34] Chunjian, P, Joshua, C, Natasha, V, Carlos, R, Sudhakar, N, Ying, Z, Chien-Hua, C, Richard B. Experimental, numerical and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy region effects. Int J Heat Mass Transf 2018;124:1015–1024. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.009.
  • [35] Hirata, T, Nishida, K. An analysis of heat transfer using equivalent thermal conductivity of liquid phase during melting inside an isothermally heated horizontal cylinder. Int J Heat Mass Transf 1989;32:1663–1670. https://doi.org/10.1016/0017-9310(89)90049-5.
  • [36] Jourabian, M, Farhadi, M, Sedighi, K, Darzi, AR, Vazifeshenas, Y. Melting of NEPCM within a Cylindrical Tube: Numerical study using the Lattice Boltzmann method. Num Heat Transf Part A: Applications 2012;61:929–948. DOI: 10.1080/10407782.2012.677375.
  • [37] Park, CE, Kim, SS, Chang, KS. Branching solutions to inward melting problem in a horizontal tube. Int Commun Heat Mass Transf 1991:18:343–350. https://doi.org/10.1016/j.csite.2016.10.001.
  • [38] Ho, C, J, Viskanta, R. Heat transfer during inward melting in a horizontal tube. Int J Heat Mass Transf 1984;27:705–716. https://doi.org/10.1016/0017-9310(84)90140-6.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mebrouk Benbrıka This is me 0000-0002-7310-5722

Mohamed Teggar This is me 0000-0003-3398-9495

Mohamed Benbelhout This is me 0000-0002-2075-8906

Kamal A. R. Ismaıl This is me 0000-0001-7671-1384

Said Bouabdallah This is me 0000-0001-5810-0010

Publication Date September 2, 2021
Submission Date December 20, 2019
Published in Issue Year 2021

Cite

APA Benbrıka, M., Teggar, M., Benbelhout, M., Ismaıl, K. A. R., et al. (2021). Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. Journal of Thermal Engineering, 7(6), 1479-1488. https://doi.org/10.18186/thermal.990872
AMA Benbrıka M, Teggar M, Benbelhout M, Ismaıl KAR, Bouabdallah S. Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. Journal of Thermal Engineering. September 2021;7(6):1479-1488. doi:10.18186/thermal.990872
Chicago Benbrıka, Mebrouk, Mohamed Teggar, Mohamed Benbelhout, Kamal A. R. Ismaıl, and Said Bouabdallah. “Effect of Orientation of Elliptic Tube on the Total Melting Time of Latent Thermal Energy Storage Systems”. Journal of Thermal Engineering 7, no. 6 (September 2021): 1479-88. https://doi.org/10.18186/thermal.990872.
EndNote Benbrıka M, Teggar M, Benbelhout M, Ismaıl KAR, Bouabdallah S (September 1, 2021) Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. Journal of Thermal Engineering 7 6 1479–1488.
IEEE M. Benbrıka, M. Teggar, M. Benbelhout, K. A. R. Ismaıl, and S. Bouabdallah, “Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems”, Journal of Thermal Engineering, vol. 7, no. 6, pp. 1479–1488, 2021, doi: 10.18186/thermal.990872.
ISNAD Benbrıka, Mebrouk et al. “Effect of Orientation of Elliptic Tube on the Total Melting Time of Latent Thermal Energy Storage Systems”. Journal of Thermal Engineering 7/6 (September 2021), 1479-1488. https://doi.org/10.18186/thermal.990872.
JAMA Benbrıka M, Teggar M, Benbelhout M, Ismaıl KAR, Bouabdallah S. Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. Journal of Thermal Engineering. 2021;7:1479–1488.
MLA Benbrıka, Mebrouk et al. “Effect of Orientation of Elliptic Tube on the Total Melting Time of Latent Thermal Energy Storage Systems”. Journal of Thermal Engineering, vol. 7, no. 6, 2021, pp. 1479-88, doi:10.18186/thermal.990872.
Vancouver Benbrıka M, Teggar M, Benbelhout M, Ismaıl KAR, Bouabdallah S. Effect of orientation of elliptic tube on the total melting time of latent thermal energy storage systems. Journal of Thermal Engineering. 2021;7(6):1479-88.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering