Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 3, 429 - 446, 01.03.2021
https://doi.org/10.18186/thermal.884657

Abstract

References

  • [1] Said Z, Ghodbane M, Sundar LS, Tiwari AK, Sheikholeslami M, Boumeddane B. Heat transfer, entropy generation, economic and environmental analyses of linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids. Renewable Energy. 2021;165(Part 1):420-37. https://doi.org/10.1016/j.renene.2020.11.054. doi:https://doi.org/10.1016/j.renene.2020.11.054.
  • [2] Ghodbane M, Benmenine D, Khechekhouche A, Boumeddane B. Brief on Solar Concentrators: Differences and Applications. Instrumentation Mesure Metrologie. 2020;19(5):371-8. https://dx.doi.org/10.18280/i2m.190507.
  • [3] Bellos E. Progress in the design and the applications of Linear Fresnel Reflectors – A critical review. Thermal Science and Engineering Progress. 2019;10(May 2019):112-37. https://doi.org/10.1016/j.tsep.2019.01.014.
  • [4] Delgado-Marín JP, García FV, García-Cascales JR. Use of a predictive control to improve the energy efficiency in indoor swimming pools using solar thermal energy. Solar Energy. 2019;179:380-90. https://doi.org/10.1016/j.solener.2019.01.004.
  • [5] Ghodbane M, Boumeddane B, Moummi N, Largot S, Berkane H. Study and numerical simulation of solar system for air heating. Journal of Fundamental and Applied Sciences. 2016;8(1):41- 60, http://dx.doi.org/10.4314/jfas.v8i1.3.
  • [6] Yıldırım C. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering. 2018;4(1):1702-12. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.365713.
  • [7] Singh J, Singh R, Bhushan B. Thermo-Hydraulic Performance of Solar Air Heater Duct having Triangular Protrusions as Roughness Geometry. Journal of Thermal Engineering 2015;1(7):607-20. https://dx.doi.org/10.18186/jte.01332.
  • [8] Ghodbane M, Boumeddane B, Said N. A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Studies in Thermal Engineering. 2016;8(C):176-86, http://dx.doi.org/10.1016/j.csite.2016.06.006.
  • [9] Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renewable Energy. 2020;151:43-56. https://doi.org/10.1016/j.renene.2019.10.137.
  • [10] Ghodbane M, Bellos E, Said Z, Boumeddane B, Hussein AK, Kolsi L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry. 2020:https://doi.org/10.1007/s10973-020-09384-6. doi:https://doi.org/10.1007/s10973-020-09384-6.
  • [11] Said Z, Ghodbane M, Hachicha AA, Boumeddane B. Optical performance assessment of a small experimental prototype of linear Fresnel reflector Case Studies in Thermal Engineering 2019:100541. https://doi.org/10.1016/j.csite.2019.
  • [12] kerme E, Kaneesamkandi Z. Performance Analysis and Design of Liquid Based Solar Heating System. Journal of Thermal Engineering. 2015;1(5):182-91. https://dx.doi.org/10.18186/jte.02359.
  • [13] Bellos E, Said Z, Tzivanidisa C. The use of nanofluids in solar concentrating technologies: A comprehensive review. Journal of Cleaner Production. 2018;196:84-99. https://doi.org/10.1016/j.jclepro.2018.06.048.
  • [14] Loni R, Asli-Ardeh EA, Ghobadian B, Ahmadi MH, Bellos E. GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using MWCNT/oil nanofluid. Solar Energy. 2018;171:790–803. https://doi.org/10.1016/j.solener.2018.07.003.
  • [15] Hussein AK. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews. 2015;42:460-76. http://dx.doi.org/10.1016/j.rser.2014.10.027.
  • [16] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview. Renewable and Sustainable Energy Reviews. 2016;62:767-92. http://dx.doi.org/10.1016/j.rser.2016.04.050.
  • [17] Rizi AP, Ashrafzadeh A, Ramezani A. A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran. Renewable Energy.138:1096-103. https://doi.org/10.16/j.renene.2019.02.026.
  • [18] Powell JW, Welsh JM, Farquharson R. Investment analysis of solar energy in a hybrid diesel irrigation pumping system in New South Wales, Australia. Journal of Cleaner Production. 2019;224: 444-54. .
  • [19] Costa BA, Lemos JM, Guillot E. Solar furnace temperature control with active cooling. Solar Energy. 2018;159: 66-77. http://dx.doi.org/10.1016/j.solener.2017.10.017.
  • [20] Indora S, Kandpal TC. Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India. Renewable Energy. 2019;135:1400-11. https://doi.org/10.016/j.renene.2018.09.067.
  • [21] Ahmed FE, Hashaikeh R, Hilal N. Solar powered desalination – Technology, energy and future outlook. Desalination. 2019; 453:54-76.
  • [22] Ghasemi A, Hashemian N, Noorpoor A, Heidarnejad P. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering. 2017;3(1):1034-43. https:/dx.doi.org/10.18186/thermal.290251.
  • [23] Stegou-Sagia A, Fragkou DV. Thin Layer Drying Modeling of Apples and Apricots in A Solar-Assisted Drying System. Journal of Thermal Engineering. 2018;4(1):1680-91. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.364909.
  • [24] Attia MEH, Driss Z, Ghodbane M, Hussein AK, Rout SK, Li D, editors. Experimental Study of the Temperature Distribution Inside an Indirect Solar Dryer Chamber. Advances in Air Conditioning and Refrigeration; 2021; Singapore: Springer Singapore.
  • [25] Zoukit A, El-Ferouali H, Salhi I, Doubabi S, Abdenouri N. Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy. 2019;133:849-60. https://doi.org/10.1016/j.renene.2018.10.082.
  • [26] Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production. 2019;231:494-508. https://doi.org/10.1016/j.jclepro.2019.05.201.
  • [27] Bouguila A, Said R. Optimization of a Small Scale Concentrated Solar Power Plant Using Rankine Cycle. Journal of Thermal Engineering. 2020;6(3):268-81. https://dx.doi.org/10.18186/thermal.711287.
  • [28] Taner T, Dalkilic AS. A Feasibility Study of Solar Energy - Economic Analysis from Aksaray, Turkey. Journal of Thermal Engineering. 2019;5(1):25-30. https:/dx.doi.org/10.18186/thermal.505498.
  • [29] Ghodbane M, Bellos E, Said Z, Boumeddane B, Khechekhouche A, Sheikholeslami M et al. Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors. Journal of Solar Energy Engineering. 2020.
  • [30] Mazzeo D. Solar and wind assisted heat pump to meet the building air conditioning and electric energy demand in the presence of an electric vehicle charging station and battery storage. Journal of Cleaner Production. 2019;213:1228-50. https://doi.org/10.016/j.jclepro.2018.12.212.
  • [31] Fong KF, Lee CK, Lin Z. Investigation on effect of indoor air distribution strategy on solar air-conditioning systems. Renewable Energy. 2019;131:413-21. https://doi.org/10.1016/j.renene.2018.07.065.
  • [32] Ghodbane M, Boumeddane B, Hussein AK. Performance analysis of a solar-driven ejector air conditioning system under El-Oued climatic conditions, Algeria Journal of Thermal Engineering. 2021;7(1):172-89. https://dx.doi.org/10.18186/thermal.847334.
  • [33] Anand Y, Gupta A, Tyagi S, Anand S. Variable Capacity Absorption Cooling System Performance for Building Application. Journal of Thermal Engineering. 2018;4(5):2303-17. https:/dx.doi.org/10.18186/thermal.439041.
  • [34] Pulido-Iparraguirre D, Valenzuela L, Aguilera JJ, Fernández-Garcíaa A. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy. 2019;131:1089-106. https://doi.org/10.16/j.renene.2018.08.018.
  • [35] Baniassadi A, Momen M, Amidpour M, Pourali O. Modeling and design of solar heat integration in process industries with heat storage. Journal of Cleaner Production. 2018;170:522-34. https://doi.org/10.1016/j.jclepro.2017.09.183.
  • [36] Farjana SH, Huda N, Parvez-Mahmud MA, Saidur R. Solar process heat in industrial systems – A global review. Renewable and Sustainable Energy Reviews. 2018;82:2270-86. http://dx.doi.org/10.1016/j.rser.2017.08.065.
  • [37] Bellos E, Korres D, Tzivanidis C, Antonopoulos KA. Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments. 2016;16:53-63. https://doi.org/10.1016/j.seta.2016.04.005.
  • [38] Shafieian A, Khiadani M, Nosrati A. Thermal performance of an evacuated tube heat pipe solar water heating system in cold season. Applied Thermal Engineering. 2019;149:644-57. https://doi.org/10.1016/j.applthermaleng.2018.12.078.
  • [39] Bellos E, Tzivanidis C. Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector. Journal of Cleaner Production. 2018;174:256-72. https://doi.org/10.1016/j.jclepro.2017.10.313.
  • [40] Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science. 2004;30(3): 231-95. https://doi.org/10.1016/j.pecs.2004.02.001.
  • [41] Bellos E, Tzivanidis C, Moghimi MA. Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Solar Energy. 2019;186: 247–56. https://doi.org/10.1016/j.solener.2019.05.020.
  • [42] Kasaeian A, Loni R, Asli-Ardeh EA, Ghobadian B, Shahverdi K. Comparison Study of Air and Thermal Oil Application in a Solar Cavity Receiver. Journal of Thermal Engineering. 2019;5(6):221-9. https://dx.doi.org/10.18186/thermal.654628.
  • [43] Kasaeian A, Loni R, Asli-Ardeh EA, Ghobadian B, Shahverdi K. Thermal Evaluation of Cavity Receiver using Water/PG as the Solar Working Fluid. Journal of Thermal Engineering. 2019;5(5):446-55. https://dx.doi.org/10.18186/thermal.624341.
  • [44] Bellos E, Tzivanidis C. Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science. 2019;71:81-117. https://doi.org/10.1016/j.pecs.2018.11.001.
  • [45] Yettou F. Receiver Temperature Maps of Parabolic Collector Used for Solar Food Cooking Application in Algeria. Journal of Thermal Engineering. 2018;4(1):1656-67. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.364866.
  • [46] Ghodbane M. Étude et optimisation des performances d'une machine de climatisation a éjecteur reliée à un concentrateur solaire Université Saad Dahleb, Blida 1, Algérie 2017.
  • [47] Hussein AK, Ghodbane M, Said Z, Ward RS. The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled with Different Nanofluids. Journal of Thermal Analysis and Calorimetry. 2020.
  • [48] Said Z, Abdelkareem MA, Rezk H, Nassef AM. Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids. Powder Technology. 2019;353:345-58.
  • [49] Said Z, Abdelkareem MA, Rezk H, Nassef AM, Atwany HZ. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technology. 2020:https://doi.org/10.1016/j.powtec.2020.02.026. doi:https://doi.org/10.1016/j.powtec.2020.02.026.
  • [50] Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renewable and Sustainable Energy Reviews. 2018;94:302-16. https://doi.org/10.1016/j.rser.2018.06.010. doi:https://doi.org/10.1016/j.rser.2018.06.010.
  • [51] Said Z, Assad MEH, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ et al. Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews. 2019;112:183-94.
  • [52] Said Z, El Haj Assad M, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ et al. Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews. 2019;112:183-94. https://doi.org/10.1016/j.rser.2019.05.052.
  • [53] Said Z, Saidur R, Rahim NA. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. Journal of Cleaner Production. 2016;133:518-30. https://doi.org/10.1016/j.jclepro.2016.05.178. doi:https://doi.org/10.1016/j.jclepro.2016.05.178.
  • [54] Said Z, Saidur R, Sabiha MA, Hepbasli A, Rahim NA. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. Journal of Cleaner Production. 2016;112:3915-26. https://doi.org/10.1016/j.jclepro.2015.07.115. doi:https://doi.org/10.1016/j.jclepro.2015.07.115.
  • [55] Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR. Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Solar Energy. 2015;115:757-69. https://doi.org/10.1016/j.solener.2015.02.037. doi:https://doi.org/10.1016/j.solener.2015.02.037.
  • [56] Mebarek-Oudina F, Makinde OD. Numerical Simulation of Oscillatory MHD Natural Convection in Cylindrical Annulus: Prandtl Number Effect. Defect and Diffusion Forum. 2018;387:417-27. http://dx.doi.org/10.4028/www.scientific.net/DDF.387.417.
  • [57] Raza J, Mebarek-Oudina F, Chamkha AJ. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures. 2019;15(4):737-57, https://doi.org/10.1108/MMMS-07-2018-0133.
  • [58] Alkasassbeh M, Omar Z, Mebarek‐Oudina F, Raza J, Chamkha A. Heat transfer study of convective fin with temperature‐dependent internal heat generation by hybrid block method. Heat Transfer—Asian Research. 2019;48(4):1225-44. https://doi.org/10.002/htj.21428.
  • [59] Mebarek‐Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer—Asian Research. 2019;48(1):135-47. https://doi.org/10.1002/htj.21375.
  • [60] Korres D, Bellos E, Tzivanidis C. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Applied Thermal Engineering. 2019;149:366–76. https://doi.org/10.1016/j.applthermaleng.2018.12.077.
  • [61] Ghodbane M, Boumeddane B. Engineering design and optical investigation of a concentrating collector: Case study of a parabolic trough concentrator J Fundam Appl Sci. 2018;10(2):148-71. http://dx.doi.org/10.4314/jfas.v10i2.11.
  • [62] Manikandan GK, Iniyan S, Goic R. Enhancing the optical and thermal efficiency of a parabolic trough collector – A review. Applied Energy. 2019;235:1524-40. https://doi.org/10.016/j.apenergy.2018.11.048.
  • [63] Azzouzi D, Bourorga HE, Belainine KA, Boumeddane B. Experimental study of a designed solar parabolic trough with large rim angle. Renewable Energy. 2018;125:495-500, https://doi.org/10.1016/j.renene.2018.01.041.
  • [64] Fernandez-Garcıa A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews. 2010;14:1695–721, https://doi.org/10.016/j.rser.2010.03.012.
  • [65] Donga RK, Kumar S. Thermal performance of parabolic trough collector with absorber tube misalignment and slope error. Solar Energy. 2019;184:249-59. https://doi.org/10.1016/j.solener.2019.04.007.
  • [66] Bellos E, Tzivanidis C, Tsimpoukis D. Optimum number of internal fins in parabolic trough collectors. Applied Thermal Engineering. 2018;137:669-77. https://doi.org/10.1016/j.applthermaleng.2018.04.037.
  • [67] Bellos E, Daniil I, Tzivanidis C. Multiple cylindrical inserts for parabolic trough solar collector. Applied Thermal Engineering. 2018;143:80-9. https://doi.org/10.1016/j.applthermaleng.2018.07.086.
  • [68] Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renewable Energy. 2017;114(Part B):1376-93. https://doi.org/10.016/j.renene.2017.06.055s.
  • [69] Bellos E, Tzivanidis C, Daniil I, Antonopoulos KA. The impact of internal longitudinal fins in parabolic trough collectors operating with gases. Energy Conversion and Management. 2017;135:35-54. https://doi.org/10.1016/j.enconman.2016.12.057.
  • [70] Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Solar Energy. 2017;157:514-31. https://doi.org/10.1016/j.solener.2017.08.067.
  • [71] Bellos E, Tzivanidis C. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments. 2018;26:105-15. https://doi.org/10.1016/j.seta.2017.10.005.
  • [72] Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Thermal Science and Engineering Progress. 2017;2:71-9. https://doi.org/10.1016/j.tsep.2017.05.001.
  • [73] Bellos E, Tzivanidis C. Investigation of a booster secondary reflector for a parabolic trough solar collector. Solar Energy. 2019;179:174-85. https://doi.org/10.1016/j.solener.2018.12.071.
  • [74] Bellos E, Tzivanidis C. Investigation of a star flow insert in a parabolic trough solar collector. Applied Energy. 2018;224:86-102. https://doi.org/10.1016/j.apenergy.2018.04.099.
  • [75] Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renewable and Sustainable Energy Reviews. 2018;91:358-75. https://doi.org/10.1016/j.rser.2018.03.091.
  • [76] Moloodpoor M, Mortazavi A, Ozbalta N. Thermal analysis of parabolic trough collectors via a swarm intelligence optimizer. Solar Energy. 2019;181:264-75. https://doi.org/10.1016/j.solener.2019.02.008.
  • [77] Ghodbane M, Boumeddane B, Said N. Design and experimental study of a solar system for heating water utilizing a linear Fresnel reflector. Journal of Fundamental and Applied Sciences. 2016;8(3):804-25, http://dx.doi.org/10.4314/jfas.v8i3.8.
  • [78] Kalogirou SA. Performance of solar collectors. Solar energy engineering : processes and systems. Academic Press of Elsevier; 2009. p. 219-50.
  • [79] Duffie JA, Beckman WA. Collector tests: Efficiency, incidence angle modifier,and time constant. In: John Wiley & Sons I, editor. Solar Engineering of Thermal Processes. 2013. p. 289-98.
  • [80] Ghodbane M, Boumeddane B. Optical modeling and thermal behavior of a parabolic trough solar collector in the Algerian sahara AMSE JOURNALS-AMSE IIETA, MMC_B. 2017;86(2):406-26. https://doi.org/10.18280/mmc_b.860207

THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS

Year 2021, Volume: 7 Issue: 3, 429 - 446, 01.03.2021
https://doi.org/10.18186/thermal.884657

Abstract

The main objective of this study is to conduct a controlled thermal investigation of a small Parabolic Trough Concentrator (PTC) under a real climatic conditions for El-Oued region on 16/03/2018, where the water was adopted as a heat transfer fluid. One-dimensional and transient energy balance equations have been analyzed, simplified and then programmed with the Matlab code. What distinguishes this study is the precise tracking of all heat coefficients that would give an accurate representation of the thermal behavior of the studied device. The average optical efficiency of the device has reached 78.55 %, the average value of the thermal efficiency has reached 74.30 %, while the average value of the overall coefficient of the thermal loss is 5.96 W.m-2.°C-1. Water steam has been formed under the effect of practical conditions between 10:20 and 11:50. The results obtained in this study encouraged the research team to start manufacturing this device with the dimensions mentioned in this paper, in order to direct this prototype setup to conduct scientific experiments will be in the field of solar cooling, desalination, water heating and other areas that serve the society welfare and maintain the environment integrity.

References

  • [1] Said Z, Ghodbane M, Sundar LS, Tiwari AK, Sheikholeslami M, Boumeddane B. Heat transfer, entropy generation, economic and environmental analyses of linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids. Renewable Energy. 2021;165(Part 1):420-37. https://doi.org/10.1016/j.renene.2020.11.054. doi:https://doi.org/10.1016/j.renene.2020.11.054.
  • [2] Ghodbane M, Benmenine D, Khechekhouche A, Boumeddane B. Brief on Solar Concentrators: Differences and Applications. Instrumentation Mesure Metrologie. 2020;19(5):371-8. https://dx.doi.org/10.18280/i2m.190507.
  • [3] Bellos E. Progress in the design and the applications of Linear Fresnel Reflectors – A critical review. Thermal Science and Engineering Progress. 2019;10(May 2019):112-37. https://doi.org/10.1016/j.tsep.2019.01.014.
  • [4] Delgado-Marín JP, García FV, García-Cascales JR. Use of a predictive control to improve the energy efficiency in indoor swimming pools using solar thermal energy. Solar Energy. 2019;179:380-90. https://doi.org/10.1016/j.solener.2019.01.004.
  • [5] Ghodbane M, Boumeddane B, Moummi N, Largot S, Berkane H. Study and numerical simulation of solar system for air heating. Journal of Fundamental and Applied Sciences. 2016;8(1):41- 60, http://dx.doi.org/10.4314/jfas.v8i1.3.
  • [6] Yıldırım C. Theoretical Investigation of a Solar Air Heater Roughened by Ribs and Grooves. Journal of Thermal Engineering. 2018;4(1):1702-12. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.365713.
  • [7] Singh J, Singh R, Bhushan B. Thermo-Hydraulic Performance of Solar Air Heater Duct having Triangular Protrusions as Roughness Geometry. Journal of Thermal Engineering 2015;1(7):607-20. https://dx.doi.org/10.18186/jte.01332.
  • [8] Ghodbane M, Boumeddane B, Said N. A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Studies in Thermal Engineering. 2016;8(C):176-86, http://dx.doi.org/10.1016/j.csite.2016.06.006.
  • [9] Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renewable Energy. 2020;151:43-56. https://doi.org/10.1016/j.renene.2019.10.137.
  • [10] Ghodbane M, Bellos E, Said Z, Boumeddane B, Hussein AK, Kolsi L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry. 2020:https://doi.org/10.1007/s10973-020-09384-6. doi:https://doi.org/10.1007/s10973-020-09384-6.
  • [11] Said Z, Ghodbane M, Hachicha AA, Boumeddane B. Optical performance assessment of a small experimental prototype of linear Fresnel reflector Case Studies in Thermal Engineering 2019:100541. https://doi.org/10.1016/j.csite.2019.
  • [12] kerme E, Kaneesamkandi Z. Performance Analysis and Design of Liquid Based Solar Heating System. Journal of Thermal Engineering. 2015;1(5):182-91. https://dx.doi.org/10.18186/jte.02359.
  • [13] Bellos E, Said Z, Tzivanidisa C. The use of nanofluids in solar concentrating technologies: A comprehensive review. Journal of Cleaner Production. 2018;196:84-99. https://doi.org/10.1016/j.jclepro.2018.06.048.
  • [14] Loni R, Asli-Ardeh EA, Ghobadian B, Ahmadi MH, Bellos E. GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using MWCNT/oil nanofluid. Solar Energy. 2018;171:790–803. https://doi.org/10.1016/j.solener.2018.07.003.
  • [15] Hussein AK. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews. 2015;42:460-76. http://dx.doi.org/10.1016/j.rser.2014.10.027.
  • [16] Hussein AK. Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview. Renewable and Sustainable Energy Reviews. 2016;62:767-92. http://dx.doi.org/10.1016/j.rser.2016.04.050.
  • [17] Rizi AP, Ashrafzadeh A, Ramezani A. A financial comparative study of solar and regular irrigation pumps: Case studies in eastern and southern Iran. Renewable Energy.138:1096-103. https://doi.org/10.16/j.renene.2019.02.026.
  • [18] Powell JW, Welsh JM, Farquharson R. Investment analysis of solar energy in a hybrid diesel irrigation pumping system in New South Wales, Australia. Journal of Cleaner Production. 2019;224: 444-54. .
  • [19] Costa BA, Lemos JM, Guillot E. Solar furnace temperature control with active cooling. Solar Energy. 2018;159: 66-77. http://dx.doi.org/10.1016/j.solener.2017.10.017.
  • [20] Indora S, Kandpal TC. Financial appraisal of using Scheffler dish for steam based institutional solar cooking in India. Renewable Energy. 2019;135:1400-11. https://doi.org/10.016/j.renene.2018.09.067.
  • [21] Ahmed FE, Hashaikeh R, Hilal N. Solar powered desalination – Technology, energy and future outlook. Desalination. 2019; 453:54-76.
  • [22] Ghasemi A, Hashemian N, Noorpoor A, Heidarnejad P. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. Journal of Thermal Engineering. 2017;3(1):1034-43. https:/dx.doi.org/10.18186/thermal.290251.
  • [23] Stegou-Sagia A, Fragkou DV. Thin Layer Drying Modeling of Apples and Apricots in A Solar-Assisted Drying System. Journal of Thermal Engineering. 2018;4(1):1680-91. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.364909.
  • [24] Attia MEH, Driss Z, Ghodbane M, Hussein AK, Rout SK, Li D, editors. Experimental Study of the Temperature Distribution Inside an Indirect Solar Dryer Chamber. Advances in Air Conditioning and Refrigeration; 2021; Singapore: Springer Singapore.
  • [25] Zoukit A, El-Ferouali H, Salhi I, Doubabi S, Abdenouri N. Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renewable Energy. 2019;133:849-60. https://doi.org/10.1016/j.renene.2018.10.082.
  • [26] Ghodbane M, Boumeddane B, Said Z, Bellos E. A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production. 2019;231:494-508. https://doi.org/10.1016/j.jclepro.2019.05.201.
  • [27] Bouguila A, Said R. Optimization of a Small Scale Concentrated Solar Power Plant Using Rankine Cycle. Journal of Thermal Engineering. 2020;6(3):268-81. https://dx.doi.org/10.18186/thermal.711287.
  • [28] Taner T, Dalkilic AS. A Feasibility Study of Solar Energy - Economic Analysis from Aksaray, Turkey. Journal of Thermal Engineering. 2019;5(1):25-30. https:/dx.doi.org/10.18186/thermal.505498.
  • [29] Ghodbane M, Bellos E, Said Z, Boumeddane B, Khechekhouche A, Sheikholeslami M et al. Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors. Journal of Solar Energy Engineering. 2020.
  • [30] Mazzeo D. Solar and wind assisted heat pump to meet the building air conditioning and electric energy demand in the presence of an electric vehicle charging station and battery storage. Journal of Cleaner Production. 2019;213:1228-50. https://doi.org/10.016/j.jclepro.2018.12.212.
  • [31] Fong KF, Lee CK, Lin Z. Investigation on effect of indoor air distribution strategy on solar air-conditioning systems. Renewable Energy. 2019;131:413-21. https://doi.org/10.1016/j.renene.2018.07.065.
  • [32] Ghodbane M, Boumeddane B, Hussein AK. Performance analysis of a solar-driven ejector air conditioning system under El-Oued climatic conditions, Algeria Journal of Thermal Engineering. 2021;7(1):172-89. https://dx.doi.org/10.18186/thermal.847334.
  • [33] Anand Y, Gupta A, Tyagi S, Anand S. Variable Capacity Absorption Cooling System Performance for Building Application. Journal of Thermal Engineering. 2018;4(5):2303-17. https:/dx.doi.org/10.18186/thermal.439041.
  • [34] Pulido-Iparraguirre D, Valenzuela L, Aguilera JJ, Fernández-Garcíaa A. Optimized design of a Linear Fresnel reflector for solar process heat applications. Renewable Energy. 2019;131:1089-106. https://doi.org/10.16/j.renene.2018.08.018.
  • [35] Baniassadi A, Momen M, Amidpour M, Pourali O. Modeling and design of solar heat integration in process industries with heat storage. Journal of Cleaner Production. 2018;170:522-34. https://doi.org/10.1016/j.jclepro.2017.09.183.
  • [36] Farjana SH, Huda N, Parvez-Mahmud MA, Saidur R. Solar process heat in industrial systems – A global review. Renewable and Sustainable Energy Reviews. 2018;82:2270-86. http://dx.doi.org/10.1016/j.rser.2017.08.065.
  • [37] Bellos E, Korres D, Tzivanidis C, Antonopoulos KA. Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments. 2016;16:53-63. https://doi.org/10.1016/j.seta.2016.04.005.
  • [38] Shafieian A, Khiadani M, Nosrati A. Thermal performance of an evacuated tube heat pipe solar water heating system in cold season. Applied Thermal Engineering. 2019;149:644-57. https://doi.org/10.1016/j.applthermaleng.2018.12.078.
  • [39] Bellos E, Tzivanidis C. Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector. Journal of Cleaner Production. 2018;174:256-72. https://doi.org/10.1016/j.jclepro.2017.10.313.
  • [40] Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science. 2004;30(3): 231-95. https://doi.org/10.1016/j.pecs.2004.02.001.
  • [41] Bellos E, Tzivanidis C, Moghimi MA. Reducing the optical end losses of a linear Fresnel reflector using novel techniques. Solar Energy. 2019;186: 247–56. https://doi.org/10.1016/j.solener.2019.05.020.
  • [42] Kasaeian A, Loni R, Asli-Ardeh EA, Ghobadian B, Shahverdi K. Comparison Study of Air and Thermal Oil Application in a Solar Cavity Receiver. Journal of Thermal Engineering. 2019;5(6):221-9. https://dx.doi.org/10.18186/thermal.654628.
  • [43] Kasaeian A, Loni R, Asli-Ardeh EA, Ghobadian B, Shahverdi K. Thermal Evaluation of Cavity Receiver using Water/PG as the Solar Working Fluid. Journal of Thermal Engineering. 2019;5(5):446-55. https://dx.doi.org/10.18186/thermal.624341.
  • [44] Bellos E, Tzivanidis C. Alternative designs of parabolic trough solar collectors. Progress in Energy and Combustion Science. 2019;71:81-117. https://doi.org/10.1016/j.pecs.2018.11.001.
  • [45] Yettou F. Receiver Temperature Maps of Parabolic Collector Used for Solar Food Cooking Application in Algeria. Journal of Thermal Engineering. 2018;4(1):1656-67. https:/dx.doi.org/10.18186/journal-of-thermal-engineering.364866.
  • [46] Ghodbane M. Étude et optimisation des performances d'une machine de climatisation a éjecteur reliée à un concentrateur solaire Université Saad Dahleb, Blida 1, Algérie 2017.
  • [47] Hussein AK, Ghodbane M, Said Z, Ward RS. The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled with Different Nanofluids. Journal of Thermal Analysis and Calorimetry. 2020.
  • [48] Said Z, Abdelkareem MA, Rezk H, Nassef AM. Fuzzy modeling and optimization for experimental thermophysical properties of water and ethylene glycol mixture for Al2O3 and TiO2 based nanofluids. Powder Technology. 2019;353:345-58.
  • [49] Said Z, Abdelkareem MA, Rezk H, Nassef AM, Atwany HZ. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technology. 2020:https://doi.org/10.1016/j.powtec.2020.02.026. doi:https://doi.org/10.1016/j.powtec.2020.02.026.
  • [50] Said Z, Arora S, Bellos E. A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics. Renewable and Sustainable Energy Reviews. 2018;94:302-16. https://doi.org/10.1016/j.rser.2018.06.010. doi:https://doi.org/10.1016/j.rser.2018.06.010.
  • [51] Said Z, Assad MEH, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ et al. Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews. 2019;112:183-94.
  • [52] Said Z, El Haj Assad M, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ et al. Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews. 2019;112:183-94. https://doi.org/10.1016/j.rser.2019.05.052.
  • [53] Said Z, Saidur R, Rahim NA. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. Journal of Cleaner Production. 2016;133:518-30. https://doi.org/10.1016/j.jclepro.2016.05.178. doi:https://doi.org/10.1016/j.jclepro.2016.05.178.
  • [54] Said Z, Saidur R, Sabiha MA, Hepbasli A, Rahim NA. Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid. Journal of Cleaner Production. 2016;112:3915-26. https://doi.org/10.1016/j.jclepro.2015.07.115. doi:https://doi.org/10.1016/j.jclepro.2015.07.115.
  • [55] Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR. Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector. Solar Energy. 2015;115:757-69. https://doi.org/10.1016/j.solener.2015.02.037. doi:https://doi.org/10.1016/j.solener.2015.02.037.
  • [56] Mebarek-Oudina F, Makinde OD. Numerical Simulation of Oscillatory MHD Natural Convection in Cylindrical Annulus: Prandtl Number Effect. Defect and Diffusion Forum. 2018;387:417-27. http://dx.doi.org/10.4028/www.scientific.net/DDF.387.417.
  • [57] Raza J, Mebarek-Oudina F, Chamkha AJ. Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures. 2019;15(4):737-57, https://doi.org/10.1108/MMMS-07-2018-0133.
  • [58] Alkasassbeh M, Omar Z, Mebarek‐Oudina F, Raza J, Chamkha A. Heat transfer study of convective fin with temperature‐dependent internal heat generation by hybrid block method. Heat Transfer—Asian Research. 2019;48(4):1225-44. https://doi.org/10.002/htj.21428.
  • [59] Mebarek‐Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer—Asian Research. 2019;48(1):135-47. https://doi.org/10.1002/htj.21375.
  • [60] Korres D, Bellos E, Tzivanidis C. Investigation of a nanofluid-based compound parabolic trough solar collector under laminar flow conditions. Applied Thermal Engineering. 2019;149:366–76. https://doi.org/10.1016/j.applthermaleng.2018.12.077.
  • [61] Ghodbane M, Boumeddane B. Engineering design and optical investigation of a concentrating collector: Case study of a parabolic trough concentrator J Fundam Appl Sci. 2018;10(2):148-71. http://dx.doi.org/10.4314/jfas.v10i2.11.
  • [62] Manikandan GK, Iniyan S, Goic R. Enhancing the optical and thermal efficiency of a parabolic trough collector – A review. Applied Energy. 2019;235:1524-40. https://doi.org/10.016/j.apenergy.2018.11.048.
  • [63] Azzouzi D, Bourorga HE, Belainine KA, Boumeddane B. Experimental study of a designed solar parabolic trough with large rim angle. Renewable Energy. 2018;125:495-500, https://doi.org/10.1016/j.renene.2018.01.041.
  • [64] Fernandez-Garcıa A, Zarza E, Valenzuela L, Perez M. Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews. 2010;14:1695–721, https://doi.org/10.016/j.rser.2010.03.012.
  • [65] Donga RK, Kumar S. Thermal performance of parabolic trough collector with absorber tube misalignment and slope error. Solar Energy. 2019;184:249-59. https://doi.org/10.1016/j.solener.2019.04.007.
  • [66] Bellos E, Tzivanidis C, Tsimpoukis D. Optimum number of internal fins in parabolic trough collectors. Applied Thermal Engineering. 2018;137:669-77. https://doi.org/10.1016/j.applthermaleng.2018.04.037.
  • [67] Bellos E, Daniil I, Tzivanidis C. Multiple cylindrical inserts for parabolic trough solar collector. Applied Thermal Engineering. 2018;143:80-9. https://doi.org/10.1016/j.applthermaleng.2018.07.086.
  • [68] Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renewable Energy. 2017;114(Part B):1376-93. https://doi.org/10.016/j.renene.2017.06.055s.
  • [69] Bellos E, Tzivanidis C, Daniil I, Antonopoulos KA. The impact of internal longitudinal fins in parabolic trough collectors operating with gases. Energy Conversion and Management. 2017;135:35-54. https://doi.org/10.1016/j.enconman.2016.12.057.
  • [70] Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Solar Energy. 2017;157:514-31. https://doi.org/10.1016/j.solener.2017.08.067.
  • [71] Bellos E, Tzivanidis C. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustainable Energy Technologies and Assessments. 2018;26:105-15. https://doi.org/10.1016/j.seta.2017.10.005.
  • [72] Bellos E, Tzivanidis C. Parametric investigation of nanofluids utilization in parabolic trough collectors. Thermal Science and Engineering Progress. 2017;2:71-9. https://doi.org/10.1016/j.tsep.2017.05.001.
  • [73] Bellos E, Tzivanidis C. Investigation of a booster secondary reflector for a parabolic trough solar collector. Solar Energy. 2019;179:174-85. https://doi.org/10.1016/j.solener.2018.12.071.
  • [74] Bellos E, Tzivanidis C. Investigation of a star flow insert in a parabolic trough solar collector. Applied Energy. 2018;224:86-102. https://doi.org/10.1016/j.apenergy.2018.04.099.
  • [75] Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renewable and Sustainable Energy Reviews. 2018;91:358-75. https://doi.org/10.1016/j.rser.2018.03.091.
  • [76] Moloodpoor M, Mortazavi A, Ozbalta N. Thermal analysis of parabolic trough collectors via a swarm intelligence optimizer. Solar Energy. 2019;181:264-75. https://doi.org/10.1016/j.solener.2019.02.008.
  • [77] Ghodbane M, Boumeddane B, Said N. Design and experimental study of a solar system for heating water utilizing a linear Fresnel reflector. Journal of Fundamental and Applied Sciences. 2016;8(3):804-25, http://dx.doi.org/10.4314/jfas.v8i3.8.
  • [78] Kalogirou SA. Performance of solar collectors. Solar energy engineering : processes and systems. Academic Press of Elsevier; 2009. p. 219-50.
  • [79] Duffie JA, Beckman WA. Collector tests: Efficiency, incidence angle modifier,and time constant. In: John Wiley & Sons I, editor. Solar Engineering of Thermal Processes. 2013. p. 289-98.
  • [80] Ghodbane M, Boumeddane B. Optical modeling and thermal behavior of a parabolic trough solar collector in the Algerian sahara AMSE JOURNALS-AMSE IIETA, MMC_B. 2017;86(2):406-26. https://doi.org/10.18280/mmc_b.860207
There are 80 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mokhtar Ghodbane This is me 0000-0003-1350-8631

Boussad Boumeddane This is me

Ahmed Kadhim Husseın This is me

Hafiz Muhammad Alı This is me

Dong Li

Publication Date March 1, 2021
Submission Date May 19, 2019
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

APA Ghodbane, M., Boumeddane, B., Husseın, A. K., Alı, H. M., et al. (2021). THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS. Journal of Thermal Engineering, 7(3), 429-446. https://doi.org/10.18186/thermal.884657
AMA Ghodbane M, Boumeddane B, Husseın AK, Alı HM, Li D. THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS. Journal of Thermal Engineering. March 2021;7(3):429-446. doi:10.18186/thermal.884657
Chicago Ghodbane, Mokhtar, Boussad Boumeddane, Ahmed Kadhim Husseın, Hafiz Muhammad Alı, and Dong Li. “THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS”. Journal of Thermal Engineering 7, no. 3 (March 2021): 429-46. https://doi.org/10.18186/thermal.884657.
EndNote Ghodbane M, Boumeddane B, Husseın AK, Alı HM, Li D (March 1, 2021) THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS. Journal of Thermal Engineering 7 3 429–446.
IEEE M. Ghodbane, B. Boumeddane, A. K. Husseın, H. M. Alı, and D. Li, “THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS”, Journal of Thermal Engineering, vol. 7, no. 3, pp. 429–446, 2021, doi: 10.18186/thermal.884657.
ISNAD Ghodbane, Mokhtar et al. “THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS”. Journal of Thermal Engineering 7/3 (March 2021), 429-446. https://doi.org/10.18186/thermal.884657.
JAMA Ghodbane M, Boumeddane B, Husseın AK, Alı HM, Li D. THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS. Journal of Thermal Engineering. 2021;7:429–446.
MLA Ghodbane, Mokhtar et al. “THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS”. Journal of Thermal Engineering, vol. 7, no. 3, 2021, pp. 429-46, doi:10.18186/thermal.884657.
Vancouver Ghodbane M, Boumeddane B, Husseın AK, Alı HM, Li D. THERMAL NUMERICAL INVESTIGATION OF A SMALL PARABOLIC TROUGH COLLECTOR UNDER DESERT CLIMATIC CONDITIONS. Journal of Thermal Engineering. 2021;7(3):429-46.

Cited By



















IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering