Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 6, 1480 - 1493, 19.11.2024

Abstract

References

  • [1] Deep Singh A, Gajera B, Sarma AK. Appraising the availability of biomass residues in India and their bioenergy potential. Waste Manage 2022;152:38–47. [CrossRef]
  • [2] Singh NB, Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective. Renew Sustain Energy Rev 2014;39:65–78. [CrossRef]
  • [3] Tolessa A. Bioenergy production potential of available biomass residue resources in Ethiopia. J Renew Energy 2023;2023:1–12. [CrossRef]
  • [4] Ben Abdallah A, Ben Hassen Trabelsi A, Navarro MV, Veses A, García T, Mihoubi D. Pyrolysis of tea and coffee wastes: Effect of physicochemical properties on kinetic and thermodynamic characteristics. J Therm Anal Calorim 2023;148:2501–2515. [CrossRef]
  • [5] Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-Petriciolet A, et al. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J Environ Manage 2023;332. [CrossRef]
  • [6] Nahar Myyas R, Tostado-Véliz M, Gómez-González M, Jurado F. Review of bioenergy potential in Jordan. Energies (Basel) 2023;16:1393. [CrossRef]
  • [7] Poyilil S, Palatel A, Chandrasekharan M. Physico-chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process. Environ Sci Pol Res 2022;29:51041–51053. [CrossRef]
  • [8] Chan YH, Cheah KW, How BS, Loy ACM, Shahbaz M, Singh HKG, et al. An overview of biomass thermochemical conversion technologies in Malaysia. Sci Total Environ 2019;680:105–123. [CrossRef]
  • [9] Kumar G, Parvathy Eswari A, Kavitha S, Dinesh Kumar M, Kannah RY, How LC, et al. Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Conver Biorefin 2020;13:85098534. [CrossRef]
  • [10] Osman AI, Farghali M, Ihara I, Elgarahy AM, Ayyad A, Mehta N, et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ Chem Lett 2023;21:1419–1476. [CrossRef]
  • [11] Ranganathan P, Gu S. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresour Technol 2016;213:333–341. [CrossRef]
  • [12] Alves JLF, da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, De Sena RF. Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 2019;121:28–40. [CrossRef]
  • [13] Wang G, Zhang J, Zhang G, Ning X, Li X, Liu Z, et al. Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends. Energy 2017;131:27–40. [CrossRef]
  • [14] Zou H, Zhang J, Liu J, Buyukada M, Evrendilek F, Liang G. Pyrolytic behaviors, kinetics, decomposition mechanisms, product distributions and joint optimization of Lentinus edodes stipe. Energy Conver Manage 2020;213:112858. [CrossRef]
  • [15] Mujtaba M, Fernandes Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod 2023;402:136815. [CrossRef]
  • [16] Suhagia BN, Rathod Is, Sindhu S. Sapindus mukorossi (Areetha): An overview. IJPSR 2011;2:1905–1913.
  • [17] Venkatesan V, Nallusamy N, Nagapandiselvi P. Waste-to-energy approach for utilizing non-edible soapnut oil methyl ester as a fuel in a twin-cylinder agricultural tractor diesel engine. Energy Fuels 2020;34:1958–1964. [CrossRef]
  • [18] Rai S, Acharya-Siwakoti E, Kafle A, Devkota HP, Bhattarai A. Plant-derived saponins: A review of their surfactant properties and applications. Sci 2021;3:44. [CrossRef]
  • [19] Mukhopadhyay S, Mukherjee S, Hashim MA, JN S, Villegas NM, Sen Gupta B. Zinc removal from soil by washing with saponin obtained from Sapindus mukorossi. J Environ Anal Chem 2018;5:18. [CrossRef]
  • [20] Ponnam V, Ghodke P, Tondepu S, Mandapati RN. Thermal behaviour kinetic modeling of capsicum annuum waste biomass using an iso-conversion method. J Themr Engineer 2021;7:1829. [CrossRef]
  • [21] Agnihotri N, Mondal MK. Thermal analysis, kinetic behavior, reaction modeling, and comprehensive pyrolysis index of soybean stalk pyrolysis. Biomass Conver Biorefin 2024;14:14977–14992. [CrossRef]
  • [22] Atkins P, de Paula J. Physical Chemistry. New York: W. H. Freeman and Company; 2006.
  • [23] Jagtap A, Kalbande SR. Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: A comparative study using model-free methods. Biomass Conver Biorefin 2022;02228-9. [CrossRef]
  • [24] Mishra A, Nanda S, Ranjan Parida M, Jena PK, Dwibedi SK, Manjari Samantaray S, et al. A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. Bioresour Technol 2023;367:128231. [CrossRef]
  • [25] Vyazovkin, Sergey CAW. Model-free and model-®tting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 1999;340-341:53–68. [CrossRef]
  • [26] Junges J, Silvestre WP, De Conto D, Baldasso C, Osório E, Godinho M. Non-isothermal kinetic study of fodder radish seed cake pyrolysis: performance of model-free and model-fitting methods. Braz J Chem Engineer 2020;37:139–155. [CrossRef]
  • [27] Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 2018;251:63–74. [CrossRef]
  • [28] Patnaik S, Panda AK, Kumar S. Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. J Energy Inst 2020;93:1449–1459. [CrossRef]
  • [29] Vasudev V, Ku X, Lin J. Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis. Bioresour Technol 2020;317:124007. [CrossRef]
  • [30] Barr MR, Volpe M, Messineo A, Volpe R. On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel 2020;276:118069. [CrossRef]
  • [31] Rajamohan S, Chidambaresh S, Sundarrajan H, Balakrishnan S, Sirohi R, Cao DN, et al. Investigation of thermodynamic and kinetic parameters of Albizia lebbeck seed pods using thermogravimetric analysis. Bioresour Technol 2023;384:129333. [CrossRef]
  • [32] Broström M, Nordin A, Pommer L, Branca C, Di Blasi C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J Anal Appl Pyrolysis 2012;96:100–109. [CrossRef]
  • [33] Tapasvi D, Khalil R, Várhegyi G, Tran KQ, Grønli M, Skreiberg Ø. Thermal decomposition kinetics of woods with an emphasis on torrefaction. Energy Fuels 2013;27:6134–6145. [CrossRef]
  • [34] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 2011;520:1–19. [CrossRef]
  • [35] Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 2014;590:1–23. [CrossRef]
  • [36] Yang Z, Zhang L, Zhang Y, Bai M, Zhang Y, Yue Z, et al. Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem Engineer J 2020;395:124980. [CrossRef]
  • [37] Ahmad MS, Klemeš JJ, Alhumade H, Elkamel A, Mahmood A, Shen B, et al. Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling. Fuel 2021;293:120349. [CrossRef]
  • [38] Pal DB, Tiwari AK, Prasad N, Srivastava N, Almalki AH, Haque S, et al. Thermo-chemical potential of solid waste seed biomass obtained from plant Phoenix dactylifera and Aegle marmelos L. Fruit core cell. Bioresour Technol 2022;345:126441. [CrossRef]
  • [39] Komandur J, Vinu R, Mohanty K. Pyrolysis kinetics and pyrolysate composition analysis of Mesua ferrea L: A non-edible oilseed towards the production of sustainable renewable fuel. Bioresour Technol 2022;351:126987. [CrossRef]
  • [40] Żółtowska S, Koltsov I, Alejski K, Ehrlich H, Ciałkowski M, Jesionowski T. Thermal decomposition behaviour and numerical fitting for the pyrolysis kinetics of 3D spongin-based scaffolds. The classic approach. Polym Test 2021;97:107148. [CrossRef]
  • [41] Singh RK, Patil T, Sawarkar AN. Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresour Technol Rep 2020;12;100558. [CrossRef]
  • [42] He Q, Ding L, Gong Y, Li W, Wei J, Yu G. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 2019;280:104–111. [CrossRef]
  • [43] Cai H, Liu J, Xie W, Kuo J, Buyukada M, Evrendilek F. Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energy Conver Manage 2019;184:436–447. [CrossRef]
  • [44] Luo L, Zhang Z, Li C, Nishu, He F, Zhang X, et al. Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis. Energy 2021;233:121194. [CrossRef]
  • [45] Upadhyay A, Singh DK. Pharmacological effects of Sapindus mukorossi. Rev Inst Med Trop Sao Paulo 2012;54:273–80. [CrossRef]
  • [46] Mishra RK, Mohanty K. Pyrolysis of Cascabela thevetia seeds over ZSM-5 catalysts: Fuel properties and compositional analysis. Biomass Conver Biorefin 2022;12:1449–1464. [CrossRef]
  • [47] Khawam A, Flanagan DR. Solid-state kinetic models: Basics and mathematical fundamentals. J Physical Chem B 2006;110:17315–17328. [CrossRef]
  • [48] Mishra RK, Mohanty K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour Technol 2020;311:123480. [CrossRef]
  • [49] Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 2018;250:422–428. [CrossRef]
  • [50] Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 1989;147:377–385. [CrossRef]
  • [51] Li Y, Cheng Y, Ye Y, Shen R. Supplement on applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim 2010;102:605–608. [CrossRef]
  • [52] Sahoo A, Kumar S, Mohanty K. Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer. Renew Energy 2021;165:261–277. [CrossRef]
  • [53] Shadangi KP, Mohanty K. Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel 2014;117:372–380. [CrossRef]
  • [54] Karaeva JV, Timofeeva SS, Islamova SI, Gerasimov AV. Pyrolysis kinetics of new bioenergy feedstock from anaerobic digestate of agro-waste by thermogravimetric analysis. J Environ Chem Engineer 2022;10:107850. [CrossRef]
  • [55] Silva JE, Calixto GQ, de Almeida CC, Melo DMA, Melo MAF, Freitas JCO, et al. Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes. J Therm Anal Calorim 2019;137:1635–1643. [CrossRef]
  • [56] Gai C, Zhang Y, Chen WT, Zhang P, Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour Technol 2013;150:139–148. [CrossRef]
  • [57] Morais LC, Maia AAD, Guandique MEG, Rosa AH. Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 2017;129:1813–1822. [CrossRef]
  • [58] Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta 2008;472:55–63. [CrossRef]
  • [59] Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath HP, et al. Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 2018;4:40–49. [CrossRef]
  • [60] Wang S, Lin H, Ru B, Dai G, Wang X, Xiao G, et al. Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel 2016;185:763–771. [CrossRef]
  • [61] Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 2020;689:178597. [CrossRef]
  • [62] Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renew Sustain Energy Rev 2018;82:2705–2715. [CrossRef]
  • [63] Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2008;2:133–146. [CrossRef]
  • [64] Ali I, Bahaitham H, Naibulharam R. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol 2017;235:1–11. [CrossRef]
  • [65] Gu T, Fu Z, Berning T, Li X, Yin C. A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration. Energy 2021;225:120133. [CrossRef]
  • [66] Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels 2015;29:2906–2918. [CrossRef]

Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters

Year 2024, Volume: 10 Issue: 6, 1480 - 1493, 19.11.2024

Abstract

Sapindus mukorossi (SM) is a fast-growing deciduous tree found extensively in tropical and sub-tropical regions of Asia. The conversion of SM seed shell (left over after extracting the pulp and kernal) to value added products through pyrolysis needs in-depth knowledge about its thermal degradation behavior. The present work studies the physicochemical properties, pyrolysis behavior, and kinetics of this less explored biomass feedstock for thermochemical conversion. The elemental composition, gross composition and higher heating value (HHV) of the SM shell is found to determine its energy potential. The kinetics of the pyrolysis reaction influence the breakdown of solid biomass into final products. Thermogravimetric analysis (TGA), wherein the sample is heated at various heating rates (5, 10, 20 °C/min) at inert condition reveals the thermal degradation profile of SM seed shell. Three important isoconversional model-free techniques, notably Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS) approaches, are employed to obtain the kinetic triplet data, the thermodynamic parameters are also determined. The C, H, N, S and O content of the SM shell was found to be 39.82%, 4.64%, 0.64%, 0.64% and 54.26% respectively. The SM seed Shell had a volatile matter, fixed carbon and HHV of 68.5%, 20.9% and 16.6 MJ/kg respectively which revealed its energy potential for thermochemical conversion. From the TGA curve, the maximum thermal degradation was observed between 200 °C and 500 °C. The values of average activation energy determined using models Friedman, OFW and KAS are 152.28 kJ mol-1, 140.05 kJ mol-1 and 138.14 kJ mol-1, respectively. The frequency factor was found to vary widely between 103 and 1015. The variation in activation energy and frequency factor as the conversion progresses indicated complicated processes during the thermal deterioration of SM. The biomass degradation occurs by diffusion and nucleation mechanisms when the conversion value is between 0.2 and 0.5, and for conversion values in the range of 0.6–0.8, the degradation occurs by diffusion mechanisms. The physicochemical characteristics of SM are found to be comparable with that of the commonly available biomasses. The detailed investigations presented in this paper have clearly demonstrated the viability of SM seed shell as a viable feedstock for the pyrolysis process.

References

  • [1] Deep Singh A, Gajera B, Sarma AK. Appraising the availability of biomass residues in India and their bioenergy potential. Waste Manage 2022;152:38–47. [CrossRef]
  • [2] Singh NB, Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective. Renew Sustain Energy Rev 2014;39:65–78. [CrossRef]
  • [3] Tolessa A. Bioenergy production potential of available biomass residue resources in Ethiopia. J Renew Energy 2023;2023:1–12. [CrossRef]
  • [4] Ben Abdallah A, Ben Hassen Trabelsi A, Navarro MV, Veses A, García T, Mihoubi D. Pyrolysis of tea and coffee wastes: Effect of physicochemical properties on kinetic and thermodynamic characteristics. J Therm Anal Calorim 2023;148:2501–2515. [CrossRef]
  • [5] Srivastava RK, Shetti NP, Reddy KR, Nadagouda MN, Badawi M, Bonilla-Petriciolet A, et al. Valorization of biowastes for clean energy production, environmental depollution and soil fertility. J Environ Manage 2023;332. [CrossRef]
  • [6] Nahar Myyas R, Tostado-Véliz M, Gómez-González M, Jurado F. Review of bioenergy potential in Jordan. Energies (Basel) 2023;16:1393. [CrossRef]
  • [7] Poyilil S, Palatel A, Chandrasekharan M. Physico-chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process. Environ Sci Pol Res 2022;29:51041–51053. [CrossRef]
  • [8] Chan YH, Cheah KW, How BS, Loy ACM, Shahbaz M, Singh HKG, et al. An overview of biomass thermochemical conversion technologies in Malaysia. Sci Total Environ 2019;680:105–123. [CrossRef]
  • [9] Kumar G, Parvathy Eswari A, Kavitha S, Dinesh Kumar M, Kannah RY, How LC, et al. Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Conver Biorefin 2020;13:85098534. [CrossRef]
  • [10] Osman AI, Farghali M, Ihara I, Elgarahy AM, Ayyad A, Mehta N, et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ Chem Lett 2023;21:1419–1476. [CrossRef]
  • [11] Ranganathan P, Gu S. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes. Bioresour Technol 2016;213:333–341. [CrossRef]
  • [12] Alves JLF, da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, De Sena RF. Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 2019;121:28–40. [CrossRef]
  • [13] Wang G, Zhang J, Zhang G, Ning X, Li X, Liu Z, et al. Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends. Energy 2017;131:27–40. [CrossRef]
  • [14] Zou H, Zhang J, Liu J, Buyukada M, Evrendilek F, Liang G. Pyrolytic behaviors, kinetics, decomposition mechanisms, product distributions and joint optimization of Lentinus edodes stipe. Energy Conver Manage 2020;213:112858. [CrossRef]
  • [15] Mujtaba M, Fernandes Fraceto L, Fazeli M, Mukherjee S, Savassa SM, Araujo de Medeiros G, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod 2023;402:136815. [CrossRef]
  • [16] Suhagia BN, Rathod Is, Sindhu S. Sapindus mukorossi (Areetha): An overview. IJPSR 2011;2:1905–1913.
  • [17] Venkatesan V, Nallusamy N, Nagapandiselvi P. Waste-to-energy approach for utilizing non-edible soapnut oil methyl ester as a fuel in a twin-cylinder agricultural tractor diesel engine. Energy Fuels 2020;34:1958–1964. [CrossRef]
  • [18] Rai S, Acharya-Siwakoti E, Kafle A, Devkota HP, Bhattarai A. Plant-derived saponins: A review of their surfactant properties and applications. Sci 2021;3:44. [CrossRef]
  • [19] Mukhopadhyay S, Mukherjee S, Hashim MA, JN S, Villegas NM, Sen Gupta B. Zinc removal from soil by washing with saponin obtained from Sapindus mukorossi. J Environ Anal Chem 2018;5:18. [CrossRef]
  • [20] Ponnam V, Ghodke P, Tondepu S, Mandapati RN. Thermal behaviour kinetic modeling of capsicum annuum waste biomass using an iso-conversion method. J Themr Engineer 2021;7:1829. [CrossRef]
  • [21] Agnihotri N, Mondal MK. Thermal analysis, kinetic behavior, reaction modeling, and comprehensive pyrolysis index of soybean stalk pyrolysis. Biomass Conver Biorefin 2024;14:14977–14992. [CrossRef]
  • [22] Atkins P, de Paula J. Physical Chemistry. New York: W. H. Freeman and Company; 2006.
  • [23] Jagtap A, Kalbande SR. Investigation on pyrolysis kinetics and thermodynamic parameters of soybean straw: A comparative study using model-free methods. Biomass Conver Biorefin 2022;02228-9. [CrossRef]
  • [24] Mishra A, Nanda S, Ranjan Parida M, Jena PK, Dwibedi SK, Manjari Samantaray S, et al. A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. Bioresour Technol 2023;367:128231. [CrossRef]
  • [25] Vyazovkin, Sergey CAW. Model-free and model-®tting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 1999;340-341:53–68. [CrossRef]
  • [26] Junges J, Silvestre WP, De Conto D, Baldasso C, Osório E, Godinho M. Non-isothermal kinetic study of fodder radish seed cake pyrolysis: performance of model-free and model-fitting methods. Braz J Chem Engineer 2020;37:139–155. [CrossRef]
  • [27] Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 2018;251:63–74. [CrossRef]
  • [28] Patnaik S, Panda AK, Kumar S. Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. J Energy Inst 2020;93:1449–1459. [CrossRef]
  • [29] Vasudev V, Ku X, Lin J. Pyrolysis of algal biomass: Determination of the kinetic triplet and thermodynamic analysis. Bioresour Technol 2020;317:124007. [CrossRef]
  • [30] Barr MR, Volpe M, Messineo A, Volpe R. On the suitability of thermogravimetric balances for the study of biomass pyrolysis. Fuel 2020;276:118069. [CrossRef]
  • [31] Rajamohan S, Chidambaresh S, Sundarrajan H, Balakrishnan S, Sirohi R, Cao DN, et al. Investigation of thermodynamic and kinetic parameters of Albizia lebbeck seed pods using thermogravimetric analysis. Bioresour Technol 2023;384:129333. [CrossRef]
  • [32] Broström M, Nordin A, Pommer L, Branca C, Di Blasi C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J Anal Appl Pyrolysis 2012;96:100–109. [CrossRef]
  • [33] Tapasvi D, Khalil R, Várhegyi G, Tran KQ, Grønli M, Skreiberg Ø. Thermal decomposition kinetics of woods with an emphasis on torrefaction. Energy Fuels 2013;27:6134–6145. [CrossRef]
  • [34] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 2011;520:1–19. [CrossRef]
  • [35] Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 2014;590:1–23. [CrossRef]
  • [36] Yang Z, Zhang L, Zhang Y, Bai M, Zhang Y, Yue Z, et al. Effects of apparent activation energy in pyrolytic carbonization on the synthesis of MOFs-carbon involving thermal analysis kinetics and decomposition mechanism. Chem Engineer J 2020;395:124980. [CrossRef]
  • [37] Ahmad MS, Klemeš JJ, Alhumade H, Elkamel A, Mahmood A, Shen B, et al. Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling. Fuel 2021;293:120349. [CrossRef]
  • [38] Pal DB, Tiwari AK, Prasad N, Srivastava N, Almalki AH, Haque S, et al. Thermo-chemical potential of solid waste seed biomass obtained from plant Phoenix dactylifera and Aegle marmelos L. Fruit core cell. Bioresour Technol 2022;345:126441. [CrossRef]
  • [39] Komandur J, Vinu R, Mohanty K. Pyrolysis kinetics and pyrolysate composition analysis of Mesua ferrea L: A non-edible oilseed towards the production of sustainable renewable fuel. Bioresour Technol 2022;351:126987. [CrossRef]
  • [40] Żółtowska S, Koltsov I, Alejski K, Ehrlich H, Ciałkowski M, Jesionowski T. Thermal decomposition behaviour and numerical fitting for the pyrolysis kinetics of 3D spongin-based scaffolds. The classic approach. Polym Test 2021;97:107148. [CrossRef]
  • [41] Singh RK, Patil T, Sawarkar AN. Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresour Technol Rep 2020;12;100558. [CrossRef]
  • [42] He Q, Ding L, Gong Y, Li W, Wei J, Yu G. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 2019;280:104–111. [CrossRef]
  • [43] Cai H, Liu J, Xie W, Kuo J, Buyukada M, Evrendilek F. Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energy Conver Manage 2019;184:436–447. [CrossRef]
  • [44] Luo L, Zhang Z, Li C, Nishu, He F, Zhang X, et al. Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis. Energy 2021;233:121194. [CrossRef]
  • [45] Upadhyay A, Singh DK. Pharmacological effects of Sapindus mukorossi. Rev Inst Med Trop Sao Paulo 2012;54:273–80. [CrossRef]
  • [46] Mishra RK, Mohanty K. Pyrolysis of Cascabela thevetia seeds over ZSM-5 catalysts: Fuel properties and compositional analysis. Biomass Conver Biorefin 2022;12:1449–1464. [CrossRef]
  • [47] Khawam A, Flanagan DR. Solid-state kinetic models: Basics and mathematical fundamentals. J Physical Chem B 2006;110:17315–17328. [CrossRef]
  • [48] Mishra RK, Mohanty K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour Technol 2020;311:123480. [CrossRef]
  • [49] Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 2018;250:422–428. [CrossRef]
  • [50] Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 1989;147:377–385. [CrossRef]
  • [51] Li Y, Cheng Y, Ye Y, Shen R. Supplement on applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim 2010;102:605–608. [CrossRef]
  • [52] Sahoo A, Kumar S, Mohanty K. Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer. Renew Energy 2021;165:261–277. [CrossRef]
  • [53] Shadangi KP, Mohanty K. Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel 2014;117:372–380. [CrossRef]
  • [54] Karaeva JV, Timofeeva SS, Islamova SI, Gerasimov AV. Pyrolysis kinetics of new bioenergy feedstock from anaerobic digestate of agro-waste by thermogravimetric analysis. J Environ Chem Engineer 2022;10:107850. [CrossRef]
  • [55] Silva JE, Calixto GQ, de Almeida CC, Melo DMA, Melo MAF, Freitas JCO, et al. Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes. J Therm Anal Calorim 2019;137:1635–1643. [CrossRef]
  • [56] Gai C, Zhang Y, Chen WT, Zhang P, Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour Technol 2013;150:139–148. [CrossRef]
  • [57] Morais LC, Maia AAD, Guandique MEG, Rosa AH. Pyrolysis and combustion of sugarcane bagasse. J Therm Anal Calorim 2017;129:1813–1822. [CrossRef]
  • [58] Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta 2008;472:55–63. [CrossRef]
  • [59] Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath HP, et al. Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep 2018;4:40–49. [CrossRef]
  • [60] Wang S, Lin H, Ru B, Dai G, Wang X, Xiao G, et al. Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel 2016;185:763–771. [CrossRef]
  • [61] Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 2020;689:178597. [CrossRef]
  • [62] Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, et al. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renew Sustain Energy Rev 2018;82:2705–2715. [CrossRef]
  • [63] Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2008;2:133–146. [CrossRef]
  • [64] Ali I, Bahaitham H, Naibulharam R. A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresour Technol 2017;235:1–11. [CrossRef]
  • [65] Gu T, Fu Z, Berning T, Li X, Yin C. A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration. Energy 2021;225:120133. [CrossRef]
  • [66] Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels 2015;29:2906–2918. [CrossRef]
There are 66 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Karunakarareddy Lomada This is me 0000-0002-0746-4970

Suraj P 0000-0002-8842-5534

Arun Palatel This is me 0000-0002-5061-1913

Muraleedharan Chandrasekharan This is me 0000-0002-7601-5693

Publication Date November 19, 2024
Submission Date September 9, 2023
Published in Issue Year 2024 Volume: 10 Issue: 6

Cite

APA Lomada, K., P, S., Palatel, A., Chandrasekharan, M. (2024). Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters. Journal of Thermal Engineering, 10(6), 1480-1493.
AMA Lomada K, P S, Palatel A, Chandrasekharan M. Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters. Journal of Thermal Engineering. November 2024;10(6):1480-1493.
Chicago Lomada, Karunakarareddy, Suraj P, Arun Palatel, and Muraleedharan Chandrasekharan. “Investigations on the Pyrolysis Behavior of Sapindus Mukorossi Based on Kinetic and Thermodynamic Parameters”. Journal of Thermal Engineering 10, no. 6 (November 2024): 1480-93.
EndNote Lomada K, P S, Palatel A, Chandrasekharan M (November 1, 2024) Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters. Journal of Thermal Engineering 10 6 1480–1493.
IEEE K. Lomada, S. P, A. Palatel, and M. Chandrasekharan, “Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters”, Journal of Thermal Engineering, vol. 10, no. 6, pp. 1480–1493, 2024.
ISNAD Lomada, Karunakarareddy et al. “Investigations on the Pyrolysis Behavior of Sapindus Mukorossi Based on Kinetic and Thermodynamic Parameters”. Journal of Thermal Engineering 10/6 (November 2024), 1480-1493.
JAMA Lomada K, P S, Palatel A, Chandrasekharan M. Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters. Journal of Thermal Engineering. 2024;10:1480–1493.
MLA Lomada, Karunakarareddy et al. “Investigations on the Pyrolysis Behavior of Sapindus Mukorossi Based on Kinetic and Thermodynamic Parameters”. Journal of Thermal Engineering, vol. 10, no. 6, 2024, pp. 1480-93.
Vancouver Lomada K, P S, Palatel A, Chandrasekharan M. Investigations on the pyrolysis behavior of Sapindus mukorossi based on kinetic and thermodynamic parameters. Journal of Thermal Engineering. 2024;10(6):1480-93.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering