Research Article
BibTex RIS Cite

INVESTIGATION OF ACTIVE FAILURE SURFACES OCCURRING BEHIND THE T TYPE CANTILEVER RETAINING WALL

Year 2021, Volume: 4 Issue: 1, 18 - 31, 30.06.2021

Abstract

Determination of lateral earth pressure plays a vital role in retaining wall design. Failure surfaces are very effective in active lateral earth pressure acting on cantilever retaining walls. Calculations of lateral earth thrusts vary for two different cases, namely short heel or long heel, based on the intersection of T type cantilever wall and failure surface. In this study, the effect of heel length on an active failure mechanism was examined with numerical simulation based on FEM. The results of the numerical analyses were compared with the results of small-scale model tests and an analytical method. In comparison, the inclination angle of active failure surfaces was taken into account. An earth thrust maximization code suggested in the literature was used to determine failure surface inclination angles analytically. In order to determine failure inclination experimentally, results of small scale tests were used. In the tests, failure surfaces were determined using particle image velocimetry technique (PIV). Numerical analysis was performed using commercially available finite element program Plaxis 2D. The same material properties are used in all numerical models. As a result of the study short heel-long heel cases and effective parameters on the inclination angles of the failure surfaces are explained elaborately.

Thanks

I would like to express my deepest appreciation to organizing committee of TICMET19 in the selection of my study which was presented in the conference organized on 10-12 October, 2019 in Gaziantep University” in Acknowledgement Section of your manuscript.

References

  • 1. Rahardjo, H., and Fredlund, D.G. General limit equilibrium method for lateral earth force, Canadian Geotechnical Journal. 2011, 21(1):166-175, DOI: 10.1139/t84-013.
  • 2. Kamiloğlu, H. A. and Şadoğlu, E. Experimental and theoretical investigation of short and long heel cases of cantilever retaining walls in active state, Int. J. Geomech., 2019, 19(5): 04019023, DOI: 10.1061/(ASCE)GM.1943-5622.0001389.
  • 3. Ouyang, C., Xu, Q., He, S., Luo, Y. and Wu,Y. A generalized limit equilibrium method for the solution of active earth pressure on a retaining wall, Journal of Mountain Science, 2019, 10(6):1018-1027, DOI: 10.1007/s11629-013-2576-x.
  • 4. Cao, W., Liu, T., Xu, Z. Estimation of active earth pressure on inclined retaining wall based on simplified principal stress trajectory method, Int. J. Geomech., 2019, 19(7): 06019011, DOI: 10.1061/(ASCE)GM.1943-5622.0001447.
  • 5. Liu, X.R., Xi, O.M., and Yang, X. Upper bound limit analysis of passive earth pressure of cohesive backfill on retaining wall, Applied Mechanics and Materials, 2013, 353-356:895-900, DOI:10.4028/www.scientific.net/AMM.353-356.895.
  • 6. Farzaneh, O., Askari, F., and Fatemi, J. Active earth pressure induced by strip loads on a backfill, Int. J. Civ. Eng., 2013, 12(4):281-291.
  • 7. Chen, W.F., and Rosenfarb, J.L. Limit analysis solutions of earth pressure problems. Soils Found., 1973, 13(4): 45-60.
  • 8. Keshavarz, A., and Ebrahimi, M. Axisymmetric active lateral earth pressure for c-Φ soils using the stress characteristics method. Scientia Iranica A. 2017, 24(5): 2332-2345, DOI:10.24200/sci.2017.4155
  • 9. Keshavarz, A., and Ebrahimi, M. The effects of the soil-wall adhesion and friction angle on the active lateral earth pressure of circular retaining walls, Int. J. Civ. Eng. 2016, 14: 97-105, https://doi.org/10.1007/s40999-016-0016-3
  • 10. Kumar, J., and Chitikela, S. Seismic passive earth pressure coefficients using the method of characteristics, Canadian Geotechnical Journal, 2002, 39(2): 463-471, https://doi.org/10.1139/t01-103
  • 11. Anvar, S.A., and Ghahramani, A. Dynamic active earth pressure against retaining walls, Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2013, St Louis, Missouri, USA.
  • 12. Hu, W., Liu, K., Zhu, X., Tong, X., and Zhou, X. Active earth pressure against rigid retaining walls for finite soils in sloping condition considering shear stress and soil arching effect, Hindawi Advances in Civil Engineering, 2020, https://doi.org/10.1155/2020/6791301.
  • 13. Hamidi, P., Akhlaghi, T., and Bonab, M.H. Finite element limit analysis of active earth pressure in nonhomogeneous soils, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2016, 64(4):1131-1138, DOI: 10.11118/actaun201664041131.
  • 14. Tang, L., Cong, S., Xing, W., Ling, X., Geng, L., and Gan, F. Finite element analysis of lateral earth pressure on sheet pile walls, Engineering Geology, 2018, 244:146-158, https://doi.org/10.1016/j.enggeo.2018.07.030.
  • 15. Hsin, K., and Liu, C.N. Finite element analysis of earth pressures for narrow retaining walls, Journal of GeoEngineering, 2007, 2(2):43-52, DOI: 10.6310/jog.2007.2(2).1
  • 16. Fan, C.C., and Fang, Y.S. Numerical solution of active earth pressures on rigid retaining walls built near rock faces, Computers and Geotechnics, 2010, 37:1023-1029, DOI:10.1016/j.compgeo.2010.08.004
  • 17. Lu, H., and Yuan, B. Calculation of passive earth pressure of cohesive soil based on Culmann's method, Water Science and Engineering, 2011, 35(1): DOI:10.3882/j.issn.1674-2370.2011.01.010
  • 18. Thakur, A.K., and Chattopadhyay, B.C. Active earth pressure on cohesion-less soil: theoretical and graphical considerations, Environmental Science, 2017, DOI:10.14445/22315381/IJETT-V49P260
  • 19. C. A. Coulomb, Essai Sur Une Application Des Règles de Maximis & Minimis à Quelques Problèmes de Statique, Relatifs à L’architecture, des Sci. Mem. MATh. Phys. Par Divers Savants, 1776, 7: 343–382.
  • 20. Rankine, W.J.M., On The Stability of Loose Earth, Phil. Trans. Royal Soc.,1857, 147.
  • 21. Greco, V.R., Analytical active earth thrust on cantilever walls with short heel, Canadian Geotechnical Journal, 2008, 45(12): 1649-1658, DOI: 10.1139/T08-078
  • 22. Goh, A.T.C. Behavior of cantilever retaining walls, J. Geotech. Eng. 1993, 119(11): 1751-1770.
  • 23. Kamiloğlu, H.A., Şadoğlu, E., and Yılmaz, F. Numerical analysis of active earth pressures on inverted T Type and semi-gravity walls. 3rd International Conference on Advanced Engineering Technologies, 2019, Bayburt, Turkey.
Year 2021, Volume: 4 Issue: 1, 18 - 31, 30.06.2021

Abstract

References

  • 1. Rahardjo, H., and Fredlund, D.G. General limit equilibrium method for lateral earth force, Canadian Geotechnical Journal. 2011, 21(1):166-175, DOI: 10.1139/t84-013.
  • 2. Kamiloğlu, H. A. and Şadoğlu, E. Experimental and theoretical investigation of short and long heel cases of cantilever retaining walls in active state, Int. J. Geomech., 2019, 19(5): 04019023, DOI: 10.1061/(ASCE)GM.1943-5622.0001389.
  • 3. Ouyang, C., Xu, Q., He, S., Luo, Y. and Wu,Y. A generalized limit equilibrium method for the solution of active earth pressure on a retaining wall, Journal of Mountain Science, 2019, 10(6):1018-1027, DOI: 10.1007/s11629-013-2576-x.
  • 4. Cao, W., Liu, T., Xu, Z. Estimation of active earth pressure on inclined retaining wall based on simplified principal stress trajectory method, Int. J. Geomech., 2019, 19(7): 06019011, DOI: 10.1061/(ASCE)GM.1943-5622.0001447.
  • 5. Liu, X.R., Xi, O.M., and Yang, X. Upper bound limit analysis of passive earth pressure of cohesive backfill on retaining wall, Applied Mechanics and Materials, 2013, 353-356:895-900, DOI:10.4028/www.scientific.net/AMM.353-356.895.
  • 6. Farzaneh, O., Askari, F., and Fatemi, J. Active earth pressure induced by strip loads on a backfill, Int. J. Civ. Eng., 2013, 12(4):281-291.
  • 7. Chen, W.F., and Rosenfarb, J.L. Limit analysis solutions of earth pressure problems. Soils Found., 1973, 13(4): 45-60.
  • 8. Keshavarz, A., and Ebrahimi, M. Axisymmetric active lateral earth pressure for c-Φ soils using the stress characteristics method. Scientia Iranica A. 2017, 24(5): 2332-2345, DOI:10.24200/sci.2017.4155
  • 9. Keshavarz, A., and Ebrahimi, M. The effects of the soil-wall adhesion and friction angle on the active lateral earth pressure of circular retaining walls, Int. J. Civ. Eng. 2016, 14: 97-105, https://doi.org/10.1007/s40999-016-0016-3
  • 10. Kumar, J., and Chitikela, S. Seismic passive earth pressure coefficients using the method of characteristics, Canadian Geotechnical Journal, 2002, 39(2): 463-471, https://doi.org/10.1139/t01-103
  • 11. Anvar, S.A., and Ghahramani, A. Dynamic active earth pressure against retaining walls, Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 2013, St Louis, Missouri, USA.
  • 12. Hu, W., Liu, K., Zhu, X., Tong, X., and Zhou, X. Active earth pressure against rigid retaining walls for finite soils in sloping condition considering shear stress and soil arching effect, Hindawi Advances in Civil Engineering, 2020, https://doi.org/10.1155/2020/6791301.
  • 13. Hamidi, P., Akhlaghi, T., and Bonab, M.H. Finite element limit analysis of active earth pressure in nonhomogeneous soils, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2016, 64(4):1131-1138, DOI: 10.11118/actaun201664041131.
  • 14. Tang, L., Cong, S., Xing, W., Ling, X., Geng, L., and Gan, F. Finite element analysis of lateral earth pressure on sheet pile walls, Engineering Geology, 2018, 244:146-158, https://doi.org/10.1016/j.enggeo.2018.07.030.
  • 15. Hsin, K., and Liu, C.N. Finite element analysis of earth pressures for narrow retaining walls, Journal of GeoEngineering, 2007, 2(2):43-52, DOI: 10.6310/jog.2007.2(2).1
  • 16. Fan, C.C., and Fang, Y.S. Numerical solution of active earth pressures on rigid retaining walls built near rock faces, Computers and Geotechnics, 2010, 37:1023-1029, DOI:10.1016/j.compgeo.2010.08.004
  • 17. Lu, H., and Yuan, B. Calculation of passive earth pressure of cohesive soil based on Culmann's method, Water Science and Engineering, 2011, 35(1): DOI:10.3882/j.issn.1674-2370.2011.01.010
  • 18. Thakur, A.K., and Chattopadhyay, B.C. Active earth pressure on cohesion-less soil: theoretical and graphical considerations, Environmental Science, 2017, DOI:10.14445/22315381/IJETT-V49P260
  • 19. C. A. Coulomb, Essai Sur Une Application Des Règles de Maximis & Minimis à Quelques Problèmes de Statique, Relatifs à L’architecture, des Sci. Mem. MATh. Phys. Par Divers Savants, 1776, 7: 343–382.
  • 20. Rankine, W.J.M., On The Stability of Loose Earth, Phil. Trans. Royal Soc.,1857, 147.
  • 21. Greco, V.R., Analytical active earth thrust on cantilever walls with short heel, Canadian Geotechnical Journal, 2008, 45(12): 1649-1658, DOI: 10.1139/T08-078
  • 22. Goh, A.T.C. Behavior of cantilever retaining walls, J. Geotech. Eng. 1993, 119(11): 1751-1770.
  • 23. Kamiloğlu, H.A., Şadoğlu, E., and Yılmaz, F. Numerical analysis of active earth pressures on inverted T Type and semi-gravity walls. 3rd International Conference on Advanced Engineering Technologies, 2019, Bayburt, Turkey.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hakan Alper Kamiloğlu 0000-0003-3313-9239

Fatih Yılmaz 0000-0003-3757-5126

Erol Şadoğlu 0000-0002-7962-9834

Publication Date June 30, 2021
Acceptance Date February 17, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Kamiloğlu, H. A., Yılmaz, F., & Şadoğlu, E. (2021). INVESTIGATION OF ACTIVE FAILURE SURFACES OCCURRING BEHIND THE T TYPE CANTILEVER RETAINING WALL. The International Journal of Materials and Engineering Technology, 4(1), 18-31.