Research Article
BibTex RIS Cite

ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

Year 2022, Volume: 5 Issue: 1, 7 - 12, 30.06.2022

Abstract

This paper presents the effect of fiber orientation on the tensile, compression, impact, and flexural properties of glass fiber reinforced acrylic-based thermoplastic composites. The mechanical behavior of three different composite plates, produced by the resin transfer molding (RTM) method, with 0o/90o/45o, 0o/90o and ±45o glass fiber orientations were investigated by carrying out tensile, compression, three-point bending and Charpy impact tests. A Weibull distribution model was implemented to explain the variation in mechanical properties of the acrylic-based composite. According to Weibull analysis results with 63.2% probability, the highest tensile strength (561 MPa), compressive strength (293 MPa) and impact values (19.44 J) were obtained when the plate with 0o/90o glass fiber orientation was tested, whereas the highest flexural strength was obtained when the plate with 0o/90o/45o was tested.

References

  • [1] Kosmann, N., Karsten, J., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010.
  • [2] Bazli, M., Jafari, A., Ashrafi, H., Zhao, X., Bai, Y., & Raman, R. S. (2020). Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Construction and Building Materials, 231, 117137. doi:10.1016/j.conbuildmat.2019.117137.
  • [3] Bai, Y., & Keller, T. (2011). Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 93(2), 843-849. doi:10.1016/j.compstruct.2010.07.010.
  • [4] Yu, B., Till, V., & Thomas, K. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16), 3098-3109. doi:10.1016/j.compscitech.2007.04.019.
  • [5] Biron, Michel. Thermoplastics and thermoplastic composites. William Andrew, 2018.
  • [6] Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., & Rink, M. (2017). Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Engineering Fracture Mechanics, 184, 51-58.
  • [7] Kazemi, M. E., Shanmugam, L., Li, Z., Ma, R., Yang, L., & Yang, J. (2020). Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. Composite Structures, 250, 112604.
  • [8] Bhudolia, S. K., & Joshi, S. C. (2018). Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Composite Structures, 203, 696-708.
  • [9] Obande, W., Ray, D., & Brádaigh, C. M. Ó. (2019). Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Materials Letters, 238, 38-41.
  • [10] Boumbimba, R. M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, A., Bonfoh, N., & Gerard, P. (2017). Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 160, 939-951.
  • [11] Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D., & Gerard, P. (2018). A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 200, 540-554.
  • [12] Bhudolia, S. K., Perrotey, P., & Joshi, S. C. (2018). Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Composites Part B: Engineering, 134, 246-253.
  • [13] Kinvi-Dossou G, Boumbimba RM, Bonfoh N, Garzon-Hernandez S, Garcia-Gonzalez D, Gerard P, Arias A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Composite Structures. 2019 Jun 1;217:1-3.
  • [14] Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing. 2019 Oct 1;125:105523.
  • [15] Obande W, Mamalis D, Ray D, Yang L, Brádaigh CM. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic-and thermoset-based composites. Materials & Design. 2019 Aug 5;175:107828.
  • [16] Cousins, Dylan S. Advanced thermoplastic composites for wind turbine blade manufacturing. Colorado School of Mines, 2018.
  • [17] Teimouri, M., Hoseini, S. M., & Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93-109.
Year 2022, Volume: 5 Issue: 1, 7 - 12, 30.06.2022

Abstract

References

  • [1] Kosmann, N., Karsten, J., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010.
  • [2] Bazli, M., Jafari, A., Ashrafi, H., Zhao, X., Bai, Y., & Raman, R. S. (2020). Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Construction and Building Materials, 231, 117137. doi:10.1016/j.conbuildmat.2019.117137.
  • [3] Bai, Y., & Keller, T. (2011). Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 93(2), 843-849. doi:10.1016/j.compstruct.2010.07.010.
  • [4] Yu, B., Till, V., & Thomas, K. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16), 3098-3109. doi:10.1016/j.compscitech.2007.04.019.
  • [5] Biron, Michel. Thermoplastics and thermoplastic composites. William Andrew, 2018.
  • [6] Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., & Rink, M. (2017). Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Engineering Fracture Mechanics, 184, 51-58.
  • [7] Kazemi, M. E., Shanmugam, L., Li, Z., Ma, R., Yang, L., & Yang, J. (2020). Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. Composite Structures, 250, 112604.
  • [8] Bhudolia, S. K., & Joshi, S. C. (2018). Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Composite Structures, 203, 696-708.
  • [9] Obande, W., Ray, D., & Brádaigh, C. M. Ó. (2019). Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Materials Letters, 238, 38-41.
  • [10] Boumbimba, R. M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, A., Bonfoh, N., & Gerard, P. (2017). Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 160, 939-951.
  • [11] Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D., & Gerard, P. (2018). A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 200, 540-554.
  • [12] Bhudolia, S. K., Perrotey, P., & Joshi, S. C. (2018). Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Composites Part B: Engineering, 134, 246-253.
  • [13] Kinvi-Dossou G, Boumbimba RM, Bonfoh N, Garzon-Hernandez S, Garcia-Gonzalez D, Gerard P, Arias A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Composite Structures. 2019 Jun 1;217:1-3.
  • [14] Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing. 2019 Oct 1;125:105523.
  • [15] Obande W, Mamalis D, Ray D, Yang L, Brádaigh CM. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic-and thermoset-based composites. Materials & Design. 2019 Aug 5;175:107828.
  • [16] Cousins, Dylan S. Advanced thermoplastic composites for wind turbine blade manufacturing. Colorado School of Mines, 2018.
  • [17] Teimouri, M., Hoseini, S. M., & Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93-109.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Composite and Hybrid Materials
Journal Section Articles
Authors

Ali Taner Kuzu 0000-0001-5519-7240

Elifnur Kösemen 0000-0002-0719-4405

Aysu Hande Yücel 0000-0001-5006-1774

Mustafa Bakkal 0000-0002-6150-9762

Publication Date June 30, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Kuzu, A. T., Kösemen, E., Yücel, A. H., Bakkal, M. (2022). ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. The International Journal of Materials and Engineering Technology, 5(1), 7-12.