Research Article
BibTex RIS Cite

SOLID PARTICLE EROSION PERFORMANCE OF MICRO ARC OXIDATION and ELECTRO SPARK DEPOSITION COATED Ti6Al4V SHEETS

Year 2022, Volume: 5 Issue: 1, 28 - 32, 30.06.2022

Abstract

In this study, an aerospace-grade Ti6Al4V alloy was coated by micro-arc oxidation (MAO) and electro spark deposition (ESD) methods to investigate their effect on solid particle erosion performance. The surface morphology and mechanical properties of coatings were characterized with SEM and nanoindentation, respectively. Solid particle erosion performance of uncoated and coated Ti6Al4V alloy was investigated by using an in-house developed test system per ASTM G76-13 test standard. Effect of impact velocity (70 and 150 m/s) on erosive wear was examined using angular-shaped SiC erodent particles (348 μm in average diameter). The SEM analyses indicated the formation of cracks on coated surfaces after erosion tests. The MAO coatings’ surface was rough and porous due to plasma chemical reactions on micro discharge channels. The nature of ESD method resulted in deposits having rough surfaces owing to the rapid solidification of melted electrode and substrate materials under atmosphere conditions. Surface topography and crater depths were determined using a surface profilometer. Erosion rate was found to be increased with increasing impact velocity due to increased kinetic energy of erodent particles. Both MAO and ESD coated samples showed worse erosion performance compared to base material Ti6Al4V considering volumetric and gravimetric wear rates.

References

  • [1] M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B.S. McLaury, S.A. Shirazi, A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications, J. Nat. Gas Sci. Eng. 21 (2014) 850–873. https://doi.org/10.1016/j.jngse.2014.10.001.
  • [2] G.F. Schmitt, Liquid and Solid Particle Erosion. Technical Report, (1979).
  • [3] S. Durdu, Ö.F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation, J. Alloys Compd. 551 (2013) 422–429. https://doi.org/https://doi.org/10.1016/j.jallcom.2012.11.024.
  • [4] S. Durdu, S. Bayramoğlu, A. Demirtaş, M. Usta, A.H. Üçışık, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum. 88 (2013) 130–133. https://doi.org/10.1016/j.vacuum.2012.01.009.
  • [5] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coatings Technol. 122 (1999) 73–93. https://doi.org/https://doi.org/10.1016/S0257-8972(99)00441-7.
  • [6] J. Zhou, S. Bahadur, Erosion-corrosion of Ti-6Al-4V in elevated temperature air environment, Wear. 186–187 (1995) 332–339. https://doi.org/10.1016/0043-1648(95)07161-X.
  • [7] H. Proudhon, J. Savkova, S. Basseville, V. Guipont, M. Jeandin, G. Cailletaud, Experimental and numerical wear studies of porous Reactive Plasma Sprayed Ti–6Al–4V/TiN composite coating, Wear. 311 (2014) 159–166. https://doi.org/https://doi.org/10.1016/j.wear.2014.01.012.
  • [8] N. Kumar, M. Shukla, Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy, J. Comput. Appl. Math. 236 (2012) 4600–4610. https://doi.org/10.1016/j.cam.2012.04.022.
  • [9] N. Kamkar, F. Bridier, P. Bocher, P. Jedrzejowski, Water droplet erosion mechanisms in rolled Ti–6Al–4V, Wear. 301 (2013) 442–448. https://doi.org/https://doi.org/10.1016/j.wear.2013.01.005.
  • [10] I. Farina, F. Fabbrocino, F. Colangelo, L. Feo, F. Fraternali, Surface roughness effects on the reinforcement of cement mortars through 3D printed metallic fibers, Compos. Part B Eng. 99 (2016) 305–311. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.05.055.
  • [11] M. Takaffoli, M. Papini, Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics, Wear. 274–275 (2012) 50–59. https://doi.org/10.1016/j.wear.2011.08.012.
  • [12] E. Avcu, S. Fidan, Y. Yildiran, T. Sinmazçelik, Solid particle erosion behaviour of Ti6Al4V alloy, Tribol. - Mater. Surfaces Interfaces. 7 (2013) 201–210. https://doi.org/10.1179/1751584X13Y.0000000043.
  • [13] J. Gu, L. Li, M. Ai, Y. Xu, Y. Xu, G. Li, D. Deng, H. Peng, S. Luo, P. Zhang, Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings, Surf. Coatings Technol. 402 (2020) 126270. https://doi.org/10.1016/j.surfcoat.2020.126270.
  • [14] L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Surf. Coatings Technol. 163–164 (2003) 484–490. https://doi.org/10.1016/S0257-8972(02)00646-1.
  • [15] L.R. Krishna, A.S. Purnima, G. Sundararajan, A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings, Wear. 261 (2006) 1095–1101. https://doi.org/10.1016/j.wear.2006.02.002.
  • [16] M. Roy, Solid Particle Erosion Behavior of WC Coating Obtained by Electrospark Technique and Detonation Spraying, Tribol. Trans. 57 (2014) 1028–1036. https://doi.org/10.1080/10402004.2014.911397.
  • [17] A. V Ribalko, K. Korkmaz, O. Sahin, Intensification of the anodic erosion in electrospark alloying by the employment of pulse group, Surf. Coatings Technol. 202 (2008) 3591–3599. https://doi.org/https://doi.org/10.1016/j.surfcoat.2007.12.037.
  • [18] S. Durdu, S.L. Aktuğ, K. Korkmaz, Characterization and mechanical properties of the duplex coatings produced on steel by electro-spark deposition and micro-arc oxidation, Surf. Coatings Technol. 236 (2013) 303–308. https://doi.org/https://doi.org/10.1016/j.surfcoat.2013.10.004.
  • [19] Astm, ASTM G76-07, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, West Conshohocken, PA, 2013. https://doi.org/10.1520/G0076-07.2.
  • [20] A.W. Ruff, L.K. Ives, Measurement of solid particle velocity in erosive wear, Wear. 35 (1975) 195–199.
  • [21] D. Acar, D. Meriç, H. Sofuoğlu, R. Gümrük, Ö.N. Cora, H. Gedikli, Helikopter Pali Aşinma Kalkaninda Meydana Gelen Kati Parçacik Erozyonunun İncelenmesi İçin Bir Test Düzeneği Tasarim Ve İmalati, in: VI. Ulus. Havacılık Ve Uzay Konf., Kocaeli, Türkiye, 2016: pp. 1–13.
Year 2022, Volume: 5 Issue: 1, 28 - 32, 30.06.2022

Abstract

References

  • [1] M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B.S. McLaury, S.A. Shirazi, A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications, J. Nat. Gas Sci. Eng. 21 (2014) 850–873. https://doi.org/10.1016/j.jngse.2014.10.001.
  • [2] G.F. Schmitt, Liquid and Solid Particle Erosion. Technical Report, (1979).
  • [3] S. Durdu, Ö.F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation, J. Alloys Compd. 551 (2013) 422–429. https://doi.org/https://doi.org/10.1016/j.jallcom.2012.11.024.
  • [4] S. Durdu, S. Bayramoğlu, A. Demirtaş, M. Usta, A.H. Üçışık, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum. 88 (2013) 130–133. https://doi.org/10.1016/j.vacuum.2012.01.009.
  • [5] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coatings Technol. 122 (1999) 73–93. https://doi.org/https://doi.org/10.1016/S0257-8972(99)00441-7.
  • [6] J. Zhou, S. Bahadur, Erosion-corrosion of Ti-6Al-4V in elevated temperature air environment, Wear. 186–187 (1995) 332–339. https://doi.org/10.1016/0043-1648(95)07161-X.
  • [7] H. Proudhon, J. Savkova, S. Basseville, V. Guipont, M. Jeandin, G. Cailletaud, Experimental and numerical wear studies of porous Reactive Plasma Sprayed Ti–6Al–4V/TiN composite coating, Wear. 311 (2014) 159–166. https://doi.org/https://doi.org/10.1016/j.wear.2014.01.012.
  • [8] N. Kumar, M. Shukla, Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy, J. Comput. Appl. Math. 236 (2012) 4600–4610. https://doi.org/10.1016/j.cam.2012.04.022.
  • [9] N. Kamkar, F. Bridier, P. Bocher, P. Jedrzejowski, Water droplet erosion mechanisms in rolled Ti–6Al–4V, Wear. 301 (2013) 442–448. https://doi.org/https://doi.org/10.1016/j.wear.2013.01.005.
  • [10] I. Farina, F. Fabbrocino, F. Colangelo, L. Feo, F. Fraternali, Surface roughness effects on the reinforcement of cement mortars through 3D printed metallic fibers, Compos. Part B Eng. 99 (2016) 305–311. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.05.055.
  • [11] M. Takaffoli, M. Papini, Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics, Wear. 274–275 (2012) 50–59. https://doi.org/10.1016/j.wear.2011.08.012.
  • [12] E. Avcu, S. Fidan, Y. Yildiran, T. Sinmazçelik, Solid particle erosion behaviour of Ti6Al4V alloy, Tribol. - Mater. Surfaces Interfaces. 7 (2013) 201–210. https://doi.org/10.1179/1751584X13Y.0000000043.
  • [13] J. Gu, L. Li, M. Ai, Y. Xu, Y. Xu, G. Li, D. Deng, H. Peng, S. Luo, P. Zhang, Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings, Surf. Coatings Technol. 402 (2020) 126270. https://doi.org/10.1016/j.surfcoat.2020.126270.
  • [14] L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan, The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation, Surf. Coatings Technol. 163–164 (2003) 484–490. https://doi.org/10.1016/S0257-8972(02)00646-1.
  • [15] L.R. Krishna, A.S. Purnima, G. Sundararajan, A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings, Wear. 261 (2006) 1095–1101. https://doi.org/10.1016/j.wear.2006.02.002.
  • [16] M. Roy, Solid Particle Erosion Behavior of WC Coating Obtained by Electrospark Technique and Detonation Spraying, Tribol. Trans. 57 (2014) 1028–1036. https://doi.org/10.1080/10402004.2014.911397.
  • [17] A. V Ribalko, K. Korkmaz, O. Sahin, Intensification of the anodic erosion in electrospark alloying by the employment of pulse group, Surf. Coatings Technol. 202 (2008) 3591–3599. https://doi.org/https://doi.org/10.1016/j.surfcoat.2007.12.037.
  • [18] S. Durdu, S.L. Aktuğ, K. Korkmaz, Characterization and mechanical properties of the duplex coatings produced on steel by electro-spark deposition and micro-arc oxidation, Surf. Coatings Technol. 236 (2013) 303–308. https://doi.org/https://doi.org/10.1016/j.surfcoat.2013.10.004.
  • [19] Astm, ASTM G76-07, Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets, West Conshohocken, PA, 2013. https://doi.org/10.1520/G0076-07.2.
  • [20] A.W. Ruff, L.K. Ives, Measurement of solid particle velocity in erosive wear, Wear. 35 (1975) 195–199.
  • [21] D. Acar, D. Meriç, H. Sofuoğlu, R. Gümrük, Ö.N. Cora, H. Gedikli, Helikopter Pali Aşinma Kalkaninda Meydana Gelen Kati Parçacik Erozyonunun İncelenmesi İçin Bir Test Düzeneği Tasarim Ve İmalati, in: VI. Ulus. Havacılık Ve Uzay Konf., Kocaeli, Türkiye, 2016: pp. 1–13.
There are 21 citations in total.

Details

Primary Language English
Subjects Plating Technology
Journal Section Articles
Authors

Doğan Acar 0000-0003-4084-856X

Salim Levent Aktuğ

Kemal Korkmaz This is me

Salih Durdu

Ömer Necati Cora

Publication Date June 30, 2022
Acceptance Date April 9, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Acar, D., Aktuğ, S. L., Korkmaz, K., Durdu, S., et al. (2022). SOLID PARTICLE EROSION PERFORMANCE OF MICRO ARC OXIDATION and ELECTRO SPARK DEPOSITION COATED Ti6Al4V SHEETS. The International Journal of Materials and Engineering Technology, 5(1), 28-32.