Research Article
BibTex RIS Cite

EXAMINATION OF THE INFLUENCE OF PRINTING PARAMETERS FOR THE CONTINUOUS CARBON FIBER-REINFORCED THERMOPLASTICS BASED ON FUSED DEPOSITION MODELING

Year 2022, Volume: 5 Issue: 2, 65 - 70, 31.12.2022

Abstract

The continuous carbon fiber-reinforced thermoplastic (CFRTP) printing process has been used more widely in recent years and is an alternative production method, especially in sectors such as aviation, automotive, prototyping, medical applications, and aerospace. Although additive manufacturing reduces the design limitations and makes it easier to manufacture, it is one of the disadvantages of this method: it has relatively low thermal and mechanical properties compared to standard production techniques. Therefore, in this study, printing parameters such as nozzle temperature, printing speed, layer thickness and heated bed temperature was investigated for fused deposition modelling. In this regard, a polymer impregnation line based on the melt impregnation technique was utilized to obtain CFRTP filaments using polylactic acid (PLA) and 3K carbon fiber. Obtained filaments then were used to print three-point bending test samples in order to investigate mechanical performance. The test result showed flexural stress between 108 and 224 MPa and flexural modulus between 9.67 and 17.69 GPa with a 23% fiber ratio. Results from this study proclaim that CFRTP's manufactured with this method and optimized printing parameters have great potential for implementing future production methods.

Supporting Institution

The Scientific and Technical Research Council of Turkey (TÜBİTAK), Office of Scientific Research Projects of Karadeniz Technical University

Project Number

120M717, FBA-2020-8974

Thanks

This work was supported by The Scientific and Technical Research Council of Turkey (TÜBİTAK) with grant number 120M717 and the Office of Scientific Research Projects of Karadeniz Technical University, Turkey, with the grant number FBA-2020-8974.

References

  • H. Yu, H. Hong, S. Cao, R. Ahmad, Topology optimization for multipatch fused deposition modeling 3D printing, Appl. Sci. 10 , 2020. https://doi.org/10.3390/app10030943.
  • R. Rezaie, M. Badrossamay, A. Ghaei, H. Moosavi, Topology optimization for fused deposition modeling process, Procedia CIRP. 6 , 2013 521–526. https://doi.org/10.1016/j.procir.2013.03.098.
  • M.R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, R. Rezaei, Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling, Int. J. Mech. Sci. 88 , 2014 154–161. https://doi.org/10.1016/j.ijmecsci.2014.08.009.
  • R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. 68 , 2013 125–139. https://doi.org/10.1016/j.ijmecsci.2013.01.006.
  • M.P. Behera, T. Dougherty, S. Singamneni, Conventional and additive manufacturing with metal matrix composites: A perspective, Procedia Manuf. 30 , 2019 159–166. https://doi.org/10.1016/j.promfg.2019.02.023.
  • T. Pereira, J. V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manuf. 30 , 2019 11–18. https://doi.org/10.1016/j.promfg.2019.02.003.
  • A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao, J. Cui, Y. Yan, Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure, Compos. Part A Appl. Sci. Manuf. 122 , 2019 1–7. https://doi.org/10.1016/j.compositesa.2019.04.019.
  • R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, Y. Hirano, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep. 6 , 2016 1–7. https://doi.org/10.1038/srep23058.
  • P.K. Penumakala, J. Santo, A. Thomas, A critical review on the fused deposition modeling of thermoplastic polymer composites, Compos. Part B Eng. 201 , 2020 108336. https://doi.org/10.1016/j.compositesb.2020.108336.
  • N. Krajangsawasdi, L.G. Blok, I. Hamerton, M.L. Longana, B.K.S. Woods, D.S. Ivanov, Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review, J. Compos. Sci. 5 , 2021 29. https://doi.org/10.3390/jcs5010029.
  • R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, Y. Hirano, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep. 6 , 2016 1–7. https://doi.org/10.1038/srep23058.
  • H. Li, T. Wang, S. Joshi, Z. Yu, The quantitative analysis of tensile strength of additively manufactured continuous carbon fiber reinforced polylactic acid (PLA, Rapid Prototyp. J. 25 , 2019 1624–1636. https://doi.org/10.1108/RPJ-01-2018-0005.
  • M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J.L. León-Salazar, T. Guillén-Girón, J.S. Corrales-Cordero, O. Sánchez-Brenes, Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology, Addit. Manuf. 22 , 2018 157–164. https://doi.org/10.1016/j.addma.2018.05.007.
  • J.M. Chacón, M.A. Caminero, P.J. Núñez, E. García-Plaza, I. García-Moreno, J.M. Reverte, Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties, Compos. Sci. Technol. 181 , 2019 107688. https://doi.org/10.1016/j.compscitech.2019.107688.
  • K. Chen, L. Yu, Y. Cui, M. Jia, K. Pan, Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites, Thin-Walled Struct. 164 , 2021 107717. https://doi.org/10.1016/j.tws.2021.107717.
  • A. Uşun, R. Gümrük, The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation, Addit. Manuf. 46 , 2021. https://doi.org/10.1016/j.addma.2021.102112.
  • X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos. Part A Appl. Sci. Manuf. 88, 2016 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
Year 2022, Volume: 5 Issue: 2, 65 - 70, 31.12.2022

Abstract

Project Number

120M717, FBA-2020-8974

References

  • H. Yu, H. Hong, S. Cao, R. Ahmad, Topology optimization for multipatch fused deposition modeling 3D printing, Appl. Sci. 10 , 2020. https://doi.org/10.3390/app10030943.
  • R. Rezaie, M. Badrossamay, A. Ghaei, H. Moosavi, Topology optimization for fused deposition modeling process, Procedia CIRP. 6 , 2013 521–526. https://doi.org/10.1016/j.procir.2013.03.098.
  • M.R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, R. Rezaei, Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling, Int. J. Mech. Sci. 88 , 2014 154–161. https://doi.org/10.1016/j.ijmecsci.2014.08.009.
  • R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. 68 , 2013 125–139. https://doi.org/10.1016/j.ijmecsci.2013.01.006.
  • M.P. Behera, T. Dougherty, S. Singamneni, Conventional and additive manufacturing with metal matrix composites: A perspective, Procedia Manuf. 30 , 2019 159–166. https://doi.org/10.1016/j.promfg.2019.02.023.
  • T. Pereira, J. V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manuf. 30 , 2019 11–18. https://doi.org/10.1016/j.promfg.2019.02.003.
  • A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao, J. Cui, Y. Yan, Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure, Compos. Part A Appl. Sci. Manuf. 122 , 2019 1–7. https://doi.org/10.1016/j.compositesa.2019.04.019.
  • R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, Y. Hirano, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep. 6 , 2016 1–7. https://doi.org/10.1038/srep23058.
  • P.K. Penumakala, J. Santo, A. Thomas, A critical review on the fused deposition modeling of thermoplastic polymer composites, Compos. Part B Eng. 201 , 2020 108336. https://doi.org/10.1016/j.compositesb.2020.108336.
  • N. Krajangsawasdi, L.G. Blok, I. Hamerton, M.L. Longana, B.K.S. Woods, D.S. Ivanov, Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review, J. Compos. Sci. 5 , 2021 29. https://doi.org/10.3390/jcs5010029.
  • R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, Y. Hirano, Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep. 6 , 2016 1–7. https://doi.org/10.1038/srep23058.
  • H. Li, T. Wang, S. Joshi, Z. Yu, The quantitative analysis of tensile strength of additively manufactured continuous carbon fiber reinforced polylactic acid (PLA, Rapid Prototyp. J. 25 , 2019 1624–1636. https://doi.org/10.1108/RPJ-01-2018-0005.
  • M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J.L. León-Salazar, T. Guillén-Girón, J.S. Corrales-Cordero, O. Sánchez-Brenes, Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology, Addit. Manuf. 22 , 2018 157–164. https://doi.org/10.1016/j.addma.2018.05.007.
  • J.M. Chacón, M.A. Caminero, P.J. Núñez, E. García-Plaza, I. García-Moreno, J.M. Reverte, Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties, Compos. Sci. Technol. 181 , 2019 107688. https://doi.org/10.1016/j.compscitech.2019.107688.
  • K. Chen, L. Yu, Y. Cui, M. Jia, K. Pan, Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites, Thin-Walled Struct. 164 , 2021 107717. https://doi.org/10.1016/j.tws.2021.107717.
  • A. Uşun, R. Gümrük, The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation, Addit. Manuf. 46 , 2021. https://doi.org/10.1016/j.addma.2021.102112.
  • X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos. Part A Appl. Sci. Manuf. 88, 2016 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Mechanical Engineering (Other), Composite and Hybrid Materials
Journal Section Articles
Authors

Altuğ Uşun 0000-0003-0773-9548

Recep Gümrük

Nuri Yıldız

Bahri Barış Vatandaş

Project Number 120M717, FBA-2020-8974
Early Pub Date August 9, 2022
Publication Date December 31, 2022
Acceptance Date August 1, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Uşun, A., Gümrük, R., Yıldız, N., Vatandaş, B. B. (2022). EXAMINATION OF THE INFLUENCE OF PRINTING PARAMETERS FOR THE CONTINUOUS CARBON FIBER-REINFORCED THERMOPLASTICS BASED ON FUSED DEPOSITION MODELING. The International Journal of Materials and Engineering Technology, 5(2), 65-70.