Review
BibTex RIS Cite

INTERCALATION REACTION IN LITHIUM-ION BATTERY: EFFECT ON CELL CHARACTERISTICS

Year 2023, Volume: 6 Issue: 2, 70 - 78, 31.12.2023

Abstract

Lithium-ion batteries (LIBs) are vital components in mobile devices and electric vehicles (EVs) due to their high energy density and long lifespan. However, to meet the rising demand for electrical devices, LIB energy density must be improved further. Anode materials, as a key component of lithium batteries, significantly improve overall energy density. LIBs are a widely utilized electrochemical power source in EVs and energy storage. LIBs have proven to be consistent because of their superior power density, which is directly related to the type of cathode, and extended lifespan in comparison to other types of rechargeable batteries. LIBs are developed with suitable electrolytes through a complex pathway that almost parallels advances in electrode chemistry. This article concentrated on the intercalation of alkali metal ions (Li+) into graphite, summarizing the important advances from experiments and theoretical calculations that underlie the tight host-guest relationship. This study elucidates the effect of the intercalation mechanism on the LIB on the electrode surface to achieve high-performance LIBs. Li metal ions in graphite are intercalated into monovalent and multivalent ions in layered electrode materials. This will result in a better understanding of intercalation chemistry in host materials for storage and conversion applications.

References

  • Theodore, A.M., Konwar, S., Singh, P.K., Mehra, R.M., Kumar, Y. Gupta, M. PEO+NaSCN and ionic liquid-based polymer electrolyte for supercapacitor. Mater Today Proc 2020, 34(3), 802–812.
  • Theodore, A.M. Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review. Int. J. Sustain. Energy 2023, 14(1), 51-58.
  • Badi, N., Theodore, A.M., Roy, A., Alghamdi, S.A., Alzahrani, A.O. M., and Ignatiev, A. Int J Electrochem Sci 2022, 17, 22064.
  • Badi, N., Theodore, A.M., Alghamdi, S.A., Al-Aoh, H.A., Lakhouit, A., Singh, P.K., Norrrahim, M.N.F., Nath, G. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers 2022, 14, 3101.
  • Theodore, A.M., Badi, N., Alghamdi, S.A. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Eliva Press. Global Ltd, 2022.
  • Dines, M. B. Lithium intercalation via butyllithium of the layered transition metal dichalcogenides Mater. Res. Bull. 1975, 10(4), 287–291.
  • Aronson, S., Salzano, F., and Bellafiore, D. Thermodynamic Properties of Potassium-Graphite Lamellar Compounds from Solid-State Emf Measurements. J. Chem. Phys. 1968, 49(1), 434–439.
  • Cairns, E.J., and Shimotake, H., High-Temperature Batteries, Science 1969, 164(3886), 1347–1355.
  • Theodore, A. M. Progress into lithium-ion battery research. J. Chem. Res. 2023, 47, 1–9.
  • Goodenough, J.B., and Park, K.S. The Li-Ion Rechargeable Battery: A Perspective. J Am Chem Soc 2013, 135, 1167–1176.
  • Van Der Ven, A., Bhattacharya, J., And Anna A. Belak, A.A. Understanding Li diffusion İn Li-Intercalation compounds. Acc. Chem. Res. 2013, 46(5), 1216-1225.
  • Yazami, R., Touzain, Ph. A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 1983, 9(3), 365–371.
  • Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem Rev 2004, 104(10), 4271–4302.
  • Choi, J.W., and Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities). Nat Rev Mater 2016, 1(4), 16013.
  • Goodenough, J.B., and Gao, H. A perspective on the Li-ion battery. Sci. China Chem 2019, 62, 1555–1556.
  • Thackeray, M. M., Vaughey, J. T., Johnson, C. S., Kropf, A. J., Benedek, R., Fransson, L. M. L., and Edstrom, K. Structural considerations of intermetallic electrodes for lithium batteries J. Power Sources 2003, 113, 124–130.
  • Timmons, A., and Dahn, J. R. In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries J. Electrochem. Soc. 2006, 153(6), A1206–A1210.
  • Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J. C., Tarascon, and J.M. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 2007, 17(36), 3759-3759.
  • Inoue, H., Mizutani, S., Ishihara, H., Hatake, and S. PRiME 2008, 214th Meeting of the Electrochemical Society, Abstract #1160, Honolulu, Hawaii (USA).
  • Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-499.
  • Godshall, N. A., Raistrick, I. D., Huggins, and R. A. Mater. Res. Bull. 1980, 15(5), 561–570.
  • Henriksen, G. L., and Jansen, A. N., Handbook of Batteries (Eds. D. Linden and T. B. Reddy), McGraw-Hill, New York, 2002.
  • Grugeon, S., Laruelle, S., Dupont, L., and Tarascon, J. M., An update on the reactivity of nanoparticle Co-based compounds towards Li. Solid State Sci. 2003, 5(6), 895–904.
  • Zhao, Y., Pohl, O., Bhatt, AI., Collis, G.E., Mahon, P.J., Rüther T., Hollenkamp AF. A Review of Battery Market Trends, Second-Life Reuse, and Recycling Sustainable Chemistry, 2021, 2(1), 167–205.
  • Srinivasan, V. The three laws of batteries (and a Bonus Zeroth Law) Gigaom, 2011.
  • Crabtree, G. The joint center for energy storage research: a new paradigm for battery research and Development AIP Conf Proc 2014, 1652, 112–28.
  • Linden, D. Handbook of Batteries and Fuel Cells; McGraw-Hill Book Co.: New York, NY, USA, 1984, 1075.
  • Yuan, T., Tan, Z., Ma, C., Yang, J., Ma, Z., Zheng, S. Challenges of Spinel Li4Ti5O12for Lithium-Ion Battery Industrial Applications. Adv. Energy Mater. 2017, 7, 1601625.
  • Ren, W.-F., Zhou, Y., Li, J.-T., Huang, L., Sun, S.-G. Si anode for next-generation lithium-ion battery. Curr. Opin. Electrochem. 2019, 18, 46–54.
  • Pistoia, G. Lithium-Ion Batteries: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2013, 664.
  • Abbas, Q., Mirzaeian, M., Hunt, M.R.C., Hall, P., Raza, R. Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies 2020, 13, 5847.
  • Whittingham. M. S. Chalcogenide battery. US patent 4,009,052. 1973.
  • Goodenough, J. B., and Mizushima, K. Electrochemical cell with new fast ion conductors US patent 4,302,518. 1981.
  • Goodenough, J. B., and Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135(4), 1167–1176.
  • Harris, W. S. Electrochemical studies in cyclic esters Thesis, University of California, Berkeley, 1958.
  • Ramanan, A. Nobel Prize in Chemistry, Resonance 2019, 24, 1381–1395.
  • Yazami, R., and Touzain, P. J. Power Sources 1983, 9,365–371.
  • Garche, J. Dyer, C., Moseley, P.T., Ogumi, Z., Rand, D., and Scrosati, B. Encyclopedia of Electrochemical Power Sources Ulm: Elsevier B.V., 2009.
  • Bruce, P. G. Energy storage beyond the horizon: rechargeable lithium batteries Solid State Ionics 2008, 179, 752–760.
  • Arora, P. and Zhang, Z. Battery separators. Chem Rev 2004, 104(10), 4419–4462.
  • Thackeray, M.M., Wolverton, C., and Isaacs, E.D. Electrical energy storage for transportation: approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 2012, 5(7), 785.
  • Muldoon, J., Bucur, C.B., Gregory, T., and Johnson, C.S. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 2014, 114(23), 11683–11720.
  • Slater, M.D., Kim, D., and Lee E. et al., Sodium-ion batteries Adv Funct Mater 2013, 23(8), 947–958.
  • Wang, Y, Chen, Rand Chen, T., Lv, H., Zhu, G., Ma, L., Wang, C., Jin, Z., Liu, J. Emerging non-lithium-ion batteries Energy Storage Mater 2016, 4, 103–129.
  • Whitacre, J.F., Wiley, T., Shanbhag, S., Wenzhuo, Y., Mohamed, A., Chun, S.E., Weber, E., Blackwood, D., Lynch-Bell, E., Gulakowski, J., Smith, C., Humphreys, D. An aqueous electrolyte, sodium-ion functional, large-format energy storage device for stationary applications J Power Sources 2012, 213, 255–264.
  • Masse, R.C., Uchaker, E., and Cao, G. Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 2015, 58(9), 715–766.
  • Yuan, L-X., Wang, Z.-H., Zhang, Hu, X.-L., Chen, J.-T., Huang, Y.-H., and Goodenough, J.B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 2011, 4(2), 269–284
  • Wang, J., and Sun, X. Olivine LiFePO4: The remaining challenges for future energy storage Energy Environ Sci 2015, 8(4), 1110–1138.
  • Wood, D.L., Li, J., and Daniel, C. Prospects for reducing the processing cost of lithium-ion batteries. J Power Sources 2015, 275, 234–242.
  • Ogihara, N., Itou, Y., Sasaki, T., Takeuchi, Y. Impedance spectroscopy characterization of porous electrodes under different electrode thicknesses using a symmetric cell for high-performance lithium-ion batteries. J Phys Chem C 2015, 119, 4612–4619.
  • Massé, R.C., Liu, C., Li, Y., Mai, L., and Cao, G. Energy storage through intercalation reactions: electrodes for rechargeable batteries, Natl. Sci. Rev. 2017, 4(1), 26–53.
  • Julien, C.M., Mauger, A., Zaghib, K., and Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2(1), 132–154.
  • Manthiram, A., Knight, J.C., Myung, S.T., Oh, S.M. Sun, Y.K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 2016, 6, 1501010.
  • Kaskhedikar, N.A., and Maier, J. Lithium storage in carbon nanostructures. Adv Mater 2009, 21, 2664–2680.
  • Hu, X., Zhang, W., Liu, X., Meia, Y., and Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 2015, 44(8), 2376–2404.
  • Liu, Y., Liu, D., Zhang, Q., and Cao, G. Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem 2011, 21, 9969.
  • Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.
  • Fletcher, S. Bottled Lightning: Superbatteries, Electric Cars, and the New Lithium Economy New York: Hill and Wang, 2011.
  • Meethong, N., Huang, H.-Y.S., and Carter WC et al. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4. Electrochem Solid-State Lett 2007, 10, A134.
  • Maier, J. Review—Battery materials: why defect chemistry? J Electrochem Soc 2015, 162(14), A2380–A2386.
  • Slater, J.C. Atomic shielding constants. Phys Rev 1930, 36, 57–64.
  • Bock, D.C., Marschilok, A.C., Takeuchi, K.J., and Takeuchi, E.S. Batteries used to power implantable biomedical devices Electrochim Acta 2012, 84, 155–164.
  • Scrosati, B. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells Chem Rec 2005, 5(5), 286–297.
  • Park, O.K., Cho, Y., Lee, S., Yoo, H.-C., Song, H.-K., and Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ Sci 2011, 4,1621.
  • Menetrier, M., Saadoune, I., and Levasseur, S., Demas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and a 7Li NMR study. J Mater Chem 1999, 9(5), 1135–1140.
  • Dijkstra, J., Bruggen, C.F.V., Van, and Haas, C. The electronic structure of some monovalent-metal intercalates of TiS2. J Phys Condens Matter 1989, 1, 4297–4309.
  • Li, H., and Zhou, H. Enhancing the performances of Li-ion batteries by carbon coating: present and future. Chem Commun 2012, 48, 1201.
  • Shin, J.Y., Samuelis, D., and Maier, J.: Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ion. 2012, 225, 590–593.
  • Shin, J., Joo, J.H., Samuelis, D., and Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high-rate capability lithium batteries. Chem Mater 2012, 24, 543–551.
  • Goodenough, J.B. Design considerations. Solid State Ion. 1994, 69, 184–198.
  • Zhang, T., Li, D. Tao, Z., and Chen, J. Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog Nat Sci Mater Int 2013, 23, 256–272.
  • Mayer, S.F., Cristina de la Calle, Fernandez-Diaz, M.T., Amarilla, J. M., and Alonso, J. A. Nitridation effect on lithium iron phosphate cathode for rechargeable batteries. RSC Adv. 2022, 12, 3696.
  • Morgan, D., Van der Ven, A., and Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 2004, 7, A30.
  • Liu, Y., Liu, D., Zhang, Q., and Cao, G. Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem 2011, 21, 9969.
  • Malik, R., Abdellahi, A., and Ceder, G. A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes. J Electrochem Soc 2013, 160, A3179–A3197.
  • Malik, R., Burch, D., Martin Bazant, M., and Ceder G. Particle size dependence of the ionic diffusivity Nano Lett 2010, 10, 4123–4127.
  • Kang, B., and Ceder, G. Battery materials for ultrafast charging and discharging Nature 2009, 458, 190–193.
  • Wang Y, Shang H, Chou T et al. Effects of thermal annealing on the Li+ intercalation properties of V2O5 nH2O xerogel films. J Phys Chem B 2005, 109, 11361–11366.
  • Liang, Y., Yoo, H.D., Li, Y., Shuai, J. Calderon, H.A., Hernandez, F.C.R., Grabow, L.C., and Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett 2015, 15(3), 2194–2202.
  • Liu, D., and Cao, G. Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium-ion intercalation Energy Environ Sci 2010, 3, 1218.
  • Wang, Y.W.Y. and Cao, G. Nanostructured materials for advanced Li-Ion rechargeable batteries. IEEE Nanotechnol Mag 2009, 3, 14–20.
  • Liu, C., Wang, S., Zhang, C. Fu, H. Xihui Nan, X., Yang, Y., Cao, G. High-power safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency Energy Storage Mater 2016, 5, 93–102.
  • Mukhopadhyay, A. and Sheldon, B.W. Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 2014, 63, 58–116.
  • Winter, M., Besenhard, J.O., Spahr, M.E. Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998, 10, 725–63.
  • Crabtree G. The joint center for energy storage research: a new paradigm for battery research and development AIP Conf Proc 2014, 1652, 112–28.
  • Mizushima, K., Jones, P.C., Wiseman, P., and J.B. Goodenough LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater Res Bull 1980, 15, 783–789.
  • Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough J.B. Lithium insertion into manganese spinels Mater Res Bull 1983, 18, 461–72.
  • Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries J Electrochem Soc 1997, 144, 1188.
  • Ohzuku, T., Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 2001, 30, 642–643.
  • Albrecht, S., Kumper, J., Kruft, M., Malcus, S., Vogler, C., Wahl M., and Wohlfahrt‐Mehrens, M. Electrochemical and thermal behaviour of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1−x (Ni1−y−zCoyMz)O2 (M = Al, Mg). J. Power Sources 2003, 119, 178–83.
  • Yazami, R., Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.
  • Ferg, E., Gummow, R.J., Dekock, A., and Thackeray, M.M. Spinel anodes for lithium-ion batteries J Electrochem Soc 1994, 141, L147–L150.
  • Koontz, D.E., Feder, D.O., Babusci, L.D., and Luer, H.J. Lead-acid battery: reserve batteries for bell system use; design of the new cell Bell System Technical J. 1970, 49, 1253–1278.
  • Huang, B., Pan, Z., Su, X., and An, L. Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 2018, 399, 274–286,
  • Jamesh M.-I. Recent advances on flexible electrodes for Na-ion batteries and Li-S batteries J Energy Chem 2019, 32, 15–44.
  • Ghimire, P.C., Bhattarai, A., Schweiss, R. Scherer, G.G., Wai N., and Q. Yan A comprehensive study of electrode compression effects in all vanadium redox flow batteries, including locally resolved measurements Appl Energy 2018, 230, 974–982.
  • Baumann, L., and Boggasch, E. Experimental assessment of hydrogen systems and vanadium-redox-flow batteries for increasing the self-consumption of photovoltaic energy in buildings. Int J Hydrogen Energy 2016, 41, 740–751.
  • Keshan, H., Thornburg, J., Ustun, T.S. Comparison of lead-acid and lithium-ion batteries for stationary storage in off-grid energy systems. Conference: 4th IET Clean Energy and Technology Conference (CEAT 2016) 2016, 1-7.
  • Theodore, A. M., Abdullahi, A.A., Pawan, S. D. Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review. JCMPS 2023, 6, 38-57.
  • Wang, F., Robert, R., Chernova, N.A., Omenya, F., Badway, F., Hua, X., Ruotolo, M., Zhang, R., Wu, L., Volkov, V., Su, D., Key, B., Whittingham, M.S., Grey, C.P. Amatucci, G.G., Zhu, Y., and Graetz, J. Conversion reaction mechanisms in lithium-ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 2011, 133, 18828–36.
  • Danis, L., Gateman, S.M., Kuss, C., Schougaard, S.B., Mauzeroll, J. Nanoscale measurements of Lithium-ion-battery materials using scanning probe techniques, ChemElectroChem 2017, 4, 6–19.
  • Tennyson, E.M., Gong, C., Leite, M.S. Imaging energy harvesting and storage systems at the Nanoscale, ACS Energy Lett 2017, 2, 2761–2777.
  • Huang, S.Q., Wang, S.W., Jin, Y. Wang, D., Shen, C.Application of Atomic Force Microscopy for the study of lithium-ion batteries. J. NanoScience, NanoEngineering Appl. 2015, 5, 35–47.
  • Eyercioglu, O., Gov, K., and Aksoy, A. Validation of material model and mechanism of material removal in abrasive flow machining. TIJMET 2023, 6(1), 7-11.
  • Liu, X., Wang, D., Wan, L. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy, Sci. Bulletin 2015, 60, 839–849.
  • Zhiqiang, Z., Yuxin, T., Zhisheng, L., Jiaqi, W., Yanyan, Z., Renheng, W., Wei, Z., Huarong, X., Mingzheng, G., Xiaodong, C. Fluoroethylene Carbonate enabling a robust LiF‐rich solid electrolyte interphase to enhance the stability of the MoS2 Anode for Lithium‐ion storage, Angewandte Chemie International Edition 2018, 57, 3656–3660.
  • Lu, W., Xiao, J., Wong, L.-M., Wang, S., Zeng, K. Probing the ionic and electrochemical phenomena during resistive switching of NiO Thin Films, ACS Appl. Mater. Interfaces 2018, 10, 8092–8101.
  • Zhu, K., Luo, Y., Zhao, F., Hou, J., Wang, X., Ma, H., Wu, H., Zhang, Y., Jiang, K., Fan, S., Wang, J., Liu, K. Free-standing, binder-free Titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.
  • Aktürk, A., Seda Türk, S. Comparıson of An Interval Type-2 Fuzzy Sets And AHP Methods For Materıal Selectıon Problem on Lithium-Ion Batterıes. TIJMET 2020, 003, 30-46.
Year 2023, Volume: 6 Issue: 2, 70 - 78, 31.12.2023

Abstract

References

  • Theodore, A.M., Konwar, S., Singh, P.K., Mehra, R.M., Kumar, Y. Gupta, M. PEO+NaSCN and ionic liquid-based polymer electrolyte for supercapacitor. Mater Today Proc 2020, 34(3), 802–812.
  • Theodore, A.M. Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review. Int. J. Sustain. Energy 2023, 14(1), 51-58.
  • Badi, N., Theodore, A.M., Roy, A., Alghamdi, S.A., Alzahrani, A.O. M., and Ignatiev, A. Int J Electrochem Sci 2022, 17, 22064.
  • Badi, N., Theodore, A.M., Alghamdi, S.A., Al-Aoh, H.A., Lakhouit, A., Singh, P.K., Norrrahim, M.N.F., Nath, G. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Polymers 2022, 14, 3101.
  • Theodore, A.M., Badi, N., Alghamdi, S.A. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries. Eliva Press. Global Ltd, 2022.
  • Dines, M. B. Lithium intercalation via butyllithium of the layered transition metal dichalcogenides Mater. Res. Bull. 1975, 10(4), 287–291.
  • Aronson, S., Salzano, F., and Bellafiore, D. Thermodynamic Properties of Potassium-Graphite Lamellar Compounds from Solid-State Emf Measurements. J. Chem. Phys. 1968, 49(1), 434–439.
  • Cairns, E.J., and Shimotake, H., High-Temperature Batteries, Science 1969, 164(3886), 1347–1355.
  • Theodore, A. M. Progress into lithium-ion battery research. J. Chem. Res. 2023, 47, 1–9.
  • Goodenough, J.B., and Park, K.S. The Li-Ion Rechargeable Battery: A Perspective. J Am Chem Soc 2013, 135, 1167–1176.
  • Van Der Ven, A., Bhattacharya, J., And Anna A. Belak, A.A. Understanding Li diffusion İn Li-Intercalation compounds. Acc. Chem. Res. 2013, 46(5), 1216-1225.
  • Yazami, R., Touzain, Ph. A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 1983, 9(3), 365–371.
  • Whittingham, M.S. Lithium Batteries and Cathode Materials. Chem Rev 2004, 104(10), 4271–4302.
  • Choi, J.W., and Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities). Nat Rev Mater 2016, 1(4), 16013.
  • Goodenough, J.B., and Gao, H. A perspective on the Li-ion battery. Sci. China Chem 2019, 62, 1555–1556.
  • Thackeray, M. M., Vaughey, J. T., Johnson, C. S., Kropf, A. J., Benedek, R., Fransson, L. M. L., and Edstrom, K. Structural considerations of intermetallic electrodes for lithium batteries J. Power Sources 2003, 113, 124–130.
  • Timmons, A., and Dahn, J. R. In Situ Optical Observations of Particle Motion in Alloy Negative Electrodes for Li-Ion Batteries J. Electrochem. Soc. 2006, 153(6), A1206–A1210.
  • Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J. C., Tarascon, and J.M. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 2007, 17(36), 3759-3759.
  • Inoue, H., Mizutani, S., Ishihara, H., Hatake, and S. PRiME 2008, 214th Meeting of the Electrochemical Society, Abstract #1160, Honolulu, Hawaii (USA).
  • Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-499.
  • Godshall, N. A., Raistrick, I. D., Huggins, and R. A. Mater. Res. Bull. 1980, 15(5), 561–570.
  • Henriksen, G. L., and Jansen, A. N., Handbook of Batteries (Eds. D. Linden and T. B. Reddy), McGraw-Hill, New York, 2002.
  • Grugeon, S., Laruelle, S., Dupont, L., and Tarascon, J. M., An update on the reactivity of nanoparticle Co-based compounds towards Li. Solid State Sci. 2003, 5(6), 895–904.
  • Zhao, Y., Pohl, O., Bhatt, AI., Collis, G.E., Mahon, P.J., Rüther T., Hollenkamp AF. A Review of Battery Market Trends, Second-Life Reuse, and Recycling Sustainable Chemistry, 2021, 2(1), 167–205.
  • Srinivasan, V. The three laws of batteries (and a Bonus Zeroth Law) Gigaom, 2011.
  • Crabtree, G. The joint center for energy storage research: a new paradigm for battery research and Development AIP Conf Proc 2014, 1652, 112–28.
  • Linden, D. Handbook of Batteries and Fuel Cells; McGraw-Hill Book Co.: New York, NY, USA, 1984, 1075.
  • Yuan, T., Tan, Z., Ma, C., Yang, J., Ma, Z., Zheng, S. Challenges of Spinel Li4Ti5O12for Lithium-Ion Battery Industrial Applications. Adv. Energy Mater. 2017, 7, 1601625.
  • Ren, W.-F., Zhou, Y., Li, J.-T., Huang, L., Sun, S.-G. Si anode for next-generation lithium-ion battery. Curr. Opin. Electrochem. 2019, 18, 46–54.
  • Pistoia, G. Lithium-Ion Batteries: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2013, 664.
  • Abbas, Q., Mirzaeian, M., Hunt, M.R.C., Hall, P., Raza, R. Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies 2020, 13, 5847.
  • Whittingham. M. S. Chalcogenide battery. US patent 4,009,052. 1973.
  • Goodenough, J. B., and Mizushima, K. Electrochemical cell with new fast ion conductors US patent 4,302,518. 1981.
  • Goodenough, J. B., and Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135(4), 1167–1176.
  • Harris, W. S. Electrochemical studies in cyclic esters Thesis, University of California, Berkeley, 1958.
  • Ramanan, A. Nobel Prize in Chemistry, Resonance 2019, 24, 1381–1395.
  • Yazami, R., and Touzain, P. J. Power Sources 1983, 9,365–371.
  • Garche, J. Dyer, C., Moseley, P.T., Ogumi, Z., Rand, D., and Scrosati, B. Encyclopedia of Electrochemical Power Sources Ulm: Elsevier B.V., 2009.
  • Bruce, P. G. Energy storage beyond the horizon: rechargeable lithium batteries Solid State Ionics 2008, 179, 752–760.
  • Arora, P. and Zhang, Z. Battery separators. Chem Rev 2004, 104(10), 4419–4462.
  • Thackeray, M.M., Wolverton, C., and Isaacs, E.D. Electrical energy storage for transportation: approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 2012, 5(7), 785.
  • Muldoon, J., Bucur, C.B., Gregory, T., and Johnson, C.S. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 2014, 114(23), 11683–11720.
  • Slater, M.D., Kim, D., and Lee E. et al., Sodium-ion batteries Adv Funct Mater 2013, 23(8), 947–958.
  • Wang, Y, Chen, Rand Chen, T., Lv, H., Zhu, G., Ma, L., Wang, C., Jin, Z., Liu, J. Emerging non-lithium-ion batteries Energy Storage Mater 2016, 4, 103–129.
  • Whitacre, J.F., Wiley, T., Shanbhag, S., Wenzhuo, Y., Mohamed, A., Chun, S.E., Weber, E., Blackwood, D., Lynch-Bell, E., Gulakowski, J., Smith, C., Humphreys, D. An aqueous electrolyte, sodium-ion functional, large-format energy storage device for stationary applications J Power Sources 2012, 213, 255–264.
  • Masse, R.C., Uchaker, E., and Cao, G. Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 2015, 58(9), 715–766.
  • Yuan, L-X., Wang, Z.-H., Zhang, Hu, X.-L., Chen, J.-T., Huang, Y.-H., and Goodenough, J.B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 2011, 4(2), 269–284
  • Wang, J., and Sun, X. Olivine LiFePO4: The remaining challenges for future energy storage Energy Environ Sci 2015, 8(4), 1110–1138.
  • Wood, D.L., Li, J., and Daniel, C. Prospects for reducing the processing cost of lithium-ion batteries. J Power Sources 2015, 275, 234–242.
  • Ogihara, N., Itou, Y., Sasaki, T., Takeuchi, Y. Impedance spectroscopy characterization of porous electrodes under different electrode thicknesses using a symmetric cell for high-performance lithium-ion batteries. J Phys Chem C 2015, 119, 4612–4619.
  • Massé, R.C., Liu, C., Li, Y., Mai, L., and Cao, G. Energy storage through intercalation reactions: electrodes for rechargeable batteries, Natl. Sci. Rev. 2017, 4(1), 26–53.
  • Julien, C.M., Mauger, A., Zaghib, K., and Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2(1), 132–154.
  • Manthiram, A., Knight, J.C., Myung, S.T., Oh, S.M. Sun, Y.K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 2016, 6, 1501010.
  • Kaskhedikar, N.A., and Maier, J. Lithium storage in carbon nanostructures. Adv Mater 2009, 21, 2664–2680.
  • Hu, X., Zhang, W., Liu, X., Meia, Y., and Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 2015, 44(8), 2376–2404.
  • Liu, Y., Liu, D., Zhang, Q., and Cao, G. Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem 2011, 21, 9969.
  • Whittingham, M.S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.
  • Fletcher, S. Bottled Lightning: Superbatteries, Electric Cars, and the New Lithium Economy New York: Hill and Wang, 2011.
  • Meethong, N., Huang, H.-Y.S., and Carter WC et al. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4. Electrochem Solid-State Lett 2007, 10, A134.
  • Maier, J. Review—Battery materials: why defect chemistry? J Electrochem Soc 2015, 162(14), A2380–A2386.
  • Slater, J.C. Atomic shielding constants. Phys Rev 1930, 36, 57–64.
  • Bock, D.C., Marschilok, A.C., Takeuchi, K.J., and Takeuchi, E.S. Batteries used to power implantable biomedical devices Electrochim Acta 2012, 84, 155–164.
  • Scrosati, B. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells Chem Rec 2005, 5(5), 286–297.
  • Park, O.K., Cho, Y., Lee, S., Yoo, H.-C., Song, H.-K., and Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ Sci 2011, 4,1621.
  • Menetrier, M., Saadoune, I., and Levasseur, S., Demas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and a 7Li NMR study. J Mater Chem 1999, 9(5), 1135–1140.
  • Dijkstra, J., Bruggen, C.F.V., Van, and Haas, C. The electronic structure of some monovalent-metal intercalates of TiS2. J Phys Condens Matter 1989, 1, 4297–4309.
  • Li, H., and Zhou, H. Enhancing the performances of Li-ion batteries by carbon coating: present and future. Chem Commun 2012, 48, 1201.
  • Shin, J.Y., Samuelis, D., and Maier, J.: Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ion. 2012, 225, 590–593.
  • Shin, J., Joo, J.H., Samuelis, D., and Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high-rate capability lithium batteries. Chem Mater 2012, 24, 543–551.
  • Goodenough, J.B. Design considerations. Solid State Ion. 1994, 69, 184–198.
  • Zhang, T., Li, D. Tao, Z., and Chen, J. Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog Nat Sci Mater Int 2013, 23, 256–272.
  • Mayer, S.F., Cristina de la Calle, Fernandez-Diaz, M.T., Amarilla, J. M., and Alonso, J. A. Nitridation effect on lithium iron phosphate cathode for rechargeable batteries. RSC Adv. 2022, 12, 3696.
  • Morgan, D., Van der Ven, A., and Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 2004, 7, A30.
  • Liu, Y., Liu, D., Zhang, Q., and Cao, G. Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. J Mater Chem 2011, 21, 9969.
  • Malik, R., Abdellahi, A., and Ceder, G. A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes. J Electrochem Soc 2013, 160, A3179–A3197.
  • Malik, R., Burch, D., Martin Bazant, M., and Ceder G. Particle size dependence of the ionic diffusivity Nano Lett 2010, 10, 4123–4127.
  • Kang, B., and Ceder, G. Battery materials for ultrafast charging and discharging Nature 2009, 458, 190–193.
  • Wang Y, Shang H, Chou T et al. Effects of thermal annealing on the Li+ intercalation properties of V2O5 nH2O xerogel films. J Phys Chem B 2005, 109, 11361–11366.
  • Liang, Y., Yoo, H.D., Li, Y., Shuai, J. Calderon, H.A., Hernandez, F.C.R., Grabow, L.C., and Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett 2015, 15(3), 2194–2202.
  • Liu, D., and Cao, G. Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium-ion intercalation Energy Environ Sci 2010, 3, 1218.
  • Wang, Y.W.Y. and Cao, G. Nanostructured materials for advanced Li-Ion rechargeable batteries. IEEE Nanotechnol Mag 2009, 3, 14–20.
  • Liu, C., Wang, S., Zhang, C. Fu, H. Xihui Nan, X., Yang, Y., Cao, G. High-power safety battery with electrospun Li3V2(PO4)3 cathode and Li4Ti5O12 anode with 95% energy efficiency Energy Storage Mater 2016, 5, 93–102.
  • Mukhopadhyay, A. and Sheldon, B.W. Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 2014, 63, 58–116.
  • Winter, M., Besenhard, J.O., Spahr, M.E. Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998, 10, 725–63.
  • Crabtree G. The joint center for energy storage research: a new paradigm for battery research and development AIP Conf Proc 2014, 1652, 112–28.
  • Mizushima, K., Jones, P.C., Wiseman, P., and J.B. Goodenough LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater Res Bull 1980, 15, 783–789.
  • Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough J.B. Lithium insertion into manganese spinels Mater Res Bull 1983, 18, 461–72.
  • Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries J Electrochem Soc 1997, 144, 1188.
  • Ohzuku, T., Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 2001, 30, 642–643.
  • Albrecht, S., Kumper, J., Kruft, M., Malcus, S., Vogler, C., Wahl M., and Wohlfahrt‐Mehrens, M. Electrochemical and thermal behaviour of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1−x (Ni1−y−zCoyMz)O2 (M = Al, Mg). J. Power Sources 2003, 119, 178–83.
  • Yazami, R., Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365–371.
  • Ferg, E., Gummow, R.J., Dekock, A., and Thackeray, M.M. Spinel anodes for lithium-ion batteries J Electrochem Soc 1994, 141, L147–L150.
  • Koontz, D.E., Feder, D.O., Babusci, L.D., and Luer, H.J. Lead-acid battery: reserve batteries for bell system use; design of the new cell Bell System Technical J. 1970, 49, 1253–1278.
  • Huang, B., Pan, Z., Su, X., and An, L. Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 2018, 399, 274–286,
  • Jamesh M.-I. Recent advances on flexible electrodes for Na-ion batteries and Li-S batteries J Energy Chem 2019, 32, 15–44.
  • Ghimire, P.C., Bhattarai, A., Schweiss, R. Scherer, G.G., Wai N., and Q. Yan A comprehensive study of electrode compression effects in all vanadium redox flow batteries, including locally resolved measurements Appl Energy 2018, 230, 974–982.
  • Baumann, L., and Boggasch, E. Experimental assessment of hydrogen systems and vanadium-redox-flow batteries for increasing the self-consumption of photovoltaic energy in buildings. Int J Hydrogen Energy 2016, 41, 740–751.
  • Keshan, H., Thornburg, J., Ustun, T.S. Comparison of lead-acid and lithium-ion batteries for stationary storage in off-grid energy systems. Conference: 4th IET Clean Energy and Technology Conference (CEAT 2016) 2016, 1-7.
  • Theodore, A. M., Abdullahi, A.A., Pawan, S. D. Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review. JCMPS 2023, 6, 38-57.
  • Wang, F., Robert, R., Chernova, N.A., Omenya, F., Badway, F., Hua, X., Ruotolo, M., Zhang, R., Wu, L., Volkov, V., Su, D., Key, B., Whittingham, M.S., Grey, C.P. Amatucci, G.G., Zhu, Y., and Graetz, J. Conversion reaction mechanisms in lithium-ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 2011, 133, 18828–36.
  • Danis, L., Gateman, S.M., Kuss, C., Schougaard, S.B., Mauzeroll, J. Nanoscale measurements of Lithium-ion-battery materials using scanning probe techniques, ChemElectroChem 2017, 4, 6–19.
  • Tennyson, E.M., Gong, C., Leite, M.S. Imaging energy harvesting and storage systems at the Nanoscale, ACS Energy Lett 2017, 2, 2761–2777.
  • Huang, S.Q., Wang, S.W., Jin, Y. Wang, D., Shen, C.Application of Atomic Force Microscopy for the study of lithium-ion batteries. J. NanoScience, NanoEngineering Appl. 2015, 5, 35–47.
  • Eyercioglu, O., Gov, K., and Aksoy, A. Validation of material model and mechanism of material removal in abrasive flow machining. TIJMET 2023, 6(1), 7-11.
  • Liu, X., Wang, D., Wan, L. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy, Sci. Bulletin 2015, 60, 839–849.
  • Zhiqiang, Z., Yuxin, T., Zhisheng, L., Jiaqi, W., Yanyan, Z., Renheng, W., Wei, Z., Huarong, X., Mingzheng, G., Xiaodong, C. Fluoroethylene Carbonate enabling a robust LiF‐rich solid electrolyte interphase to enhance the stability of the MoS2 Anode for Lithium‐ion storage, Angewandte Chemie International Edition 2018, 57, 3656–3660.
  • Lu, W., Xiao, J., Wong, L.-M., Wang, S., Zeng, K. Probing the ionic and electrochemical phenomena during resistive switching of NiO Thin Films, ACS Appl. Mater. Interfaces 2018, 10, 8092–8101.
  • Zhu, K., Luo, Y., Zhao, F., Hou, J., Wang, X., Ma, H., Wu, H., Zhang, Y., Jiang, K., Fan, S., Wang, J., Liu, K. Free-standing, binder-free Titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.
  • Aktürk, A., Seda Türk, S. Comparıson of An Interval Type-2 Fuzzy Sets And AHP Methods For Materıal Selectıon Problem on Lithium-Ion Batterıes. TIJMET 2020, 003, 30-46.
There are 109 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Articles
Authors

Theodore Azemtsop Manfo 0000-0002-9043-3111

Mustafa Ergin Şahin 0000-0002-5121-6173

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date December 8, 2023
Acceptance Date December 30, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Azemtsop Manfo, T., & Şahin, M. E. (2023). INTERCALATION REACTION IN LITHIUM-ION BATTERY: EFFECT ON CELL CHARACTERISTICS. The International Journal of Materials and Engineering Technology, 6(2), 70-78.