Effects on Growing of Scenedesmus spp. use of Different Medium
Year 2023,
Volume: 1 Issue: 2, 7 - 16, 31.12.2023
Selin Doğan
,
Zeliha Akyüz
,
Rabia Tatar
,
Emirhan Ögrü
,
Muhammet Furkan Topal
,
Yusuf Gülşahin
,
Gökçe Karadayı
,
Mehmet Karadayı
,
Özden Fakıoğlu
,
Medine Güllüce
Abstract
The aim of this study is investigated in the effects of different medium on growing performans Scenedesmus spp., which is an industrially important member of the Chlorophyceae (Green algae) group. For this purpose, Scenedesmus spp. is isolated from natural lakes within the borders of Erzurum province by from samples taken with a plankton net. Pure cell culture growth of Scedesmus spp. in BBM (Bold's Basal Medium), 3N-BBM (3 Nitrogen Bold's Basal Medium), WCM (Wright's Cryptophyte Medium), BG-11 (Blue Green Algal) was monitored during 14 days in incubation. At the end of the try has been found the highest growth in 3N-BBM culture medium with a mean cell counting of 355 cells/ml, and the lowest growth in WCM culture medium with a mean cell counting of 86 cells/ml. As a result of in this try has been determined that the culture medium enriched with nitrogen (N) is effective positive impact on growing of Scenedesmus spp.
Project Number
TÜBİTAK ARDEB-1001 (122O2973)
References
- Ağırman, N. (2015). Chlorella vulgaris ve Scenedesmus acutus'un Gelişimi, Pigment Oluşumu, Lipit Ve Protein İçeriği Üzerine Farklı Stres Faktörlerinin Etkileri. Doktora Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Andersen, R.A. (2005). Algal Culturing Techniques (1). San Diego, ABD: Elsevier Science Publishing Co.
- Baydaş, F. (2010). Farklı İki Mikroalg (Scenedesmus dimorphus ve Chlorella vulgaris) ve Kuru Ekmek Mayası (Saccharomyces cerevisiae) ile Beslenen Moina Micrura (Kurz, 1874)'nın Besin Alma Aktivitesinin Araştırılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Becker, E.W. (2013). Microalgae for human and animal nutrition. Handbook of microalgal culture: applied phycology and biotechnology, 461-503.
- Becker, E.W., (1995). Microalgae:Biotechnology and Microbiology. P: 293. Cambridge University Pres.
- Ben-Amotz, A., Avron, M. (1983). Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol, 37:95-119.
- Bischoff, H.W., Bold H.C. (1963). Filamentous and Colonial Soil Algae from Dauphin Island, Alabama. Transactions of the American Microscopical Society, 88(2), 240-246.
- Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674.
https://doi.org/10.1016/j.jece.2013.11.005.
- Blair, M.F., Kokabian, B., Gude, V.G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. J. Environ. Chem. Eng., 2 (1), 665-674.
- Bold H.C. (1949). The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bulletin of the Torrey Botanical Club, 76(2), 101-108.
- Borowitzka, L.J. (1991). Development of western biotechnology's algal β-carotene plant. Bioresource technology, 38(2-3), 251-252.
- Borowitzka, M. A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9(5), 393–401. https://doi.org/10.1023/A:1007921728300.
- Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331. https://doi.org/10.1016/S0044-8486(96)01501-3.
- Cirik, S. & Gökpınar, Ş. (1999). Plankton Bilgisi ve Kültürü. Ege Üniversitesi Su Ürünleri Fakültesi ders kitabı, Ege Üniversitesi Basımevi, Bornova, İzmir.
- Çoban, A. (2019). Farklı Azot Kaynaklarının Scenedesmus acutus meyen'un Gelişimi, Lipit ve Protein Miktarı Üzerine Etkileri. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Del Campo, J. A., Moreno, J., Rodríguez, H., Angeles Vargas, M., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76(1), 51–59. https://doi.org/10.1016/S0168-1656(99)00178-9.
- Demirel, Z. (2006). Eğirdir Gölünden İzole Edilen Yeşil Mikroalg (Chlorophyta) Scenedesmus protuberans Fris.’İn Antimikrobiyal ve Antioksidan Özelliğinin Araştırılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ege Üniversitesi, İzmir.
- Duygu, D. Y. (2019). Growth Kinetics of Scenedesmus obliquus strains in different nutrient media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95-103. https://doi.org/10.17216/limnofish.514166.
- Fabregas, J., Toribio, L., Abalde, J., Cabezas, B., Herrero, C. (1984). Aquacultural Engineering Approach to biomass production of the marine microalga Tetraselmis suecica (kylin) butch using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures, 6(2):141-150.
- Garcia-Moscoso, J.L., Obeid, W., Kumar, S., Hatcher, P.G. (2013). Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates. The Journal of Supercritical Fluids, 82, 183-190.
- Guedes, A.C., Gião, M.S., Seabra, R., Ferreira, A.S., Tamagnini, P., Moradas-Ferreira, P., & Malcata, F.X. (2013). Evaluation of the antioxidant activity of cell extracts from microalgae. Marine drugs, 11(4), 1256-1270.
- Güner, H., Aysel A., (2006). Tohumsuz Bitkiler Sistematiği. Ege Üniversitesi Fen Fakültesi Kitaplar serisi, no:108 VI. Baskı, 1.cilt, 117-120,
- Hu, Q., Sommerfeld M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 54(4):621-39.
- Jayasankar, R., & Polywal, K. (2000). Seasonal variation in the essential micro-nutrients of Gracilaria spp. of Tamil Nadu coast. Indian Journal of Fisheries, 47(4), 349-354.
- Jensen, G.S. (2001). Blue-green algae as an immuno-enhancer and biomodulator. J. Am. Nutraceutical Assoc., 3, 24-30.
- Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607–4638.
- Kar, F. (2019). Scenedesmus dimorphus Biyofilm Kültürlerinde Azot Açlığının Lipid Üretimi Üzerine Etkisi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Dumlupınar Üniversitesi, Kütahya.
- Kurusakız, M. (2020). Scenedesmus intermedius ve Scenedesmus planctonicus Alg Türlerinde Azota Bağlı Lipit İçeriğindeki Değişimlerin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kırıkkale Üniversitesi, Kırıkkale.
- Liu, J., Qiu, W., Song, Y. (2016). Stimulatory effect of auxins on the growth and lipid productivity of Lopez, B. R., Palacios, O. A., Bashan, Y., Hern´andez-Sandoval, F. E., De-Bashan L. E. (2019). Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. Algal Research, 44,1-8.
- Mandal, S., Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84, 281-291.
- Matsunaga, T., Matsumoto, M., Maeda, Y., Sugiyama, H., Sato, R., Tanaka, T. 2009. Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production, Biotechnology letters, 31(9), 1367-1372.
- Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., ... & Schoefs, B. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current pharmaceutical biotechnology, 13(15), 2733-2750.
- Özalın, G. (2020). Scenedesmus regularis ve Scenedesmus obliquus Alg Türlerinde Azota Bağlı Lipit İçeriğindeki Değişimlerin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kırıkkale Üniversitesi , Kırıkkale.
- P. Coutteau. (1996). “Micro-Algae,” In: P. Lavens and P. Sorgeloos, Eds., Manual on the Production and Use of Live Food for Aquaculture, FAO Fisheries Technical Paper No. 361, Laboratory of Aquaculture & Artemia Reference Center, University of Gent, Belgium.
- Phinyo, K., Pekkoh, J., & Peerapornpisal, Y. (2017). Distribution and ecological habitat of Scenedesmus and related genera in some freshwater resources of Northern and North-Eastern Thailand. Biodiversitas Journal of Biological Diversity, 18(3), 1092-1099.
- Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science and Technology, 19(1), 31–39.
- Rashid, N., Rehman, M. S. U., Memon, S., Ur Rahman, Z., Lee, K., & Han, J. I. (2013). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579.
- Richmond, A. (Ed.). (2004). Handbook of microalgal culture: biotechnology and applied phycology (Vol. 577). Oxford: Blackwell science.
- Rocha, G.S., Pinto, F.H.V., Melão, M.G.G., & Lombardi, A.T. (2015). Growing Scenedesmus quadricauda in used culture media: is it viable?. Journal of applied phycology, 27, 171-178.
https://link.springer.com/article/10.1007/s10811-014-0320-8.
- Shayesteh, H., Raeisossadati, M., Vadiveloo, A., Bahri, P.A., & Moheimani, N. R. (2023). Culture depth effect on Scenedesmus sp. growth, photo-physiology and nutrient removal rate in anaerobically digested abattoir effluent. Journal of applied phycology, 35(2), 567-580. https://link.springer.com/article/10.1007/s10811-023-02915-2.
- Shayesteh, H., Raeisossadati, M., Vadiveloo, A., Bahri, P.A., & Moheimani, N.R. (2023). Culture depth effect on Scenedesmus sp. growth, photo-physiology and nutrient removal rate in anaerobically digested abattoir effluent. Journal of applied phycology, 35(2), 567-580.
- Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1–4), 217–224.
- Stolz, P., & Obermayer, B. (2005). Manufacturing microalgae for skin care. Cosmetic and toiletries, 120(3), 99-106.
- Sukatar, A., (2002). Alg Kültür Yöntemleri. Ege Üni. Fen Fak. Kitapları Serisi No:184, syf: 104.
- Trainor, F. R. (1996). Reproduction in Scenedesmus. Algae. The Korean Journal of Phycology, 11(2), 183-201.
- Xin, L., Hong-Ying, H., Ke, G., Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresource Technology, 101, 5494-5500.
- Xin, L., Hong-Ying, H., Yu-Ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102.
- Xu, M., Bernards, M., & Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource technology, 153, 383-387.
- Zhila, N.O, Kalacheva, G.S., Volova, T.G., (2011). Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol, 17:309–315.
- Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and sustainable energy reviews, 41, 1376-1384.Badger, M.R., & Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101.
Farklı Kültür Ortamlarının Scenedesmus spp. Gelişimi Üzerine Etkileri
Year 2023,
Volume: 1 Issue: 2, 7 - 16, 31.12.2023
Selin Doğan
,
Zeliha Akyüz
,
Rabia Tatar
,
Emirhan Ögrü
,
Muhammet Furkan Topal
,
Yusuf Gülşahin
,
Gökçe Karadayı
,
Mehmet Karadayı
,
Özden Fakıoğlu
,
Medine Güllüce
Abstract
Bu çalışmanın amacı Chlorophycea (Yeşil algler) grubunun endüstriyel açıdan önemli bir üyesi olan Scenedesmus spp. türlerinin gelişimleri üzerine farklı kültür ortamlarının etkilerinin araştırılmasıdır. Bu amaçla Erzurum il sınırları içerisinde yer alan doğal göllerden plankton kepçesi ile alınan örneklerden Scenedesmus spp. izole edilmiştir. Scedesmus spp.’nin BBM (Bold’s Basal Medium), 3N-BBM (3 Nitrogen Bold’s Basal Medium), WCM (Wright’s Cryptophyte Medium), BG-11 (Blue Green Algal) saf hücre kültür büyümeleri 14 günlük inkübasyon süresince takip edilmiştir. Deneme sonunda en yüksek gelişim ortalama 355 x 104 adet/ml hücre sayısıyla 3N-BBM kültür ortamında, en düşük gelişim ortalama 86 x 104 adet/ml hücre sayısıyla WCM kültür ortamında hesaplanmıştır. Sonuç olarak azot (N) ile zenginleştirilmiş kültür ortamının Scedesmus spp. gelişimine pozitif etki ettiği tespit edilmiştir.
Project Number
TÜBİTAK ARDEB-1001 (122O2973)
References
- Ağırman, N. (2015). Chlorella vulgaris ve Scenedesmus acutus'un Gelişimi, Pigment Oluşumu, Lipit Ve Protein İçeriği Üzerine Farklı Stres Faktörlerinin Etkileri. Doktora Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Andersen, R.A. (2005). Algal Culturing Techniques (1). San Diego, ABD: Elsevier Science Publishing Co.
- Baydaş, F. (2010). Farklı İki Mikroalg (Scenedesmus dimorphus ve Chlorella vulgaris) ve Kuru Ekmek Mayası (Saccharomyces cerevisiae) ile Beslenen Moina Micrura (Kurz, 1874)'nın Besin Alma Aktivitesinin Araştırılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Becker, E.W. (2013). Microalgae for human and animal nutrition. Handbook of microalgal culture: applied phycology and biotechnology, 461-503.
- Becker, E.W., (1995). Microalgae:Biotechnology and Microbiology. P: 293. Cambridge University Pres.
- Ben-Amotz, A., Avron, M. (1983). Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol, 37:95-119.
- Bischoff, H.W., Bold H.C. (1963). Filamentous and Colonial Soil Algae from Dauphin Island, Alabama. Transactions of the American Microscopical Society, 88(2), 240-246.
- Blair, M. F., Kokabian, B., & Gude, V. G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. Journal of Environmental Chemical Engineering, 2(1), 665–674.
https://doi.org/10.1016/j.jece.2013.11.005.
- Blair, M.F., Kokabian, B., Gude, V.G. (2014). Light and growth medium effect on Chlorella vulgaris biomass production. J. Environ. Chem. Eng., 2 (1), 665-674.
- Bold H.C. (1949). The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bulletin of the Torrey Botanical Club, 76(2), 101-108.
- Borowitzka, L.J. (1991). Development of western biotechnology's algal β-carotene plant. Bioresource technology, 38(2-3), 251-252.
- Borowitzka, M. A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9(5), 393–401. https://doi.org/10.1023/A:1007921728300.
- Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331. https://doi.org/10.1016/S0044-8486(96)01501-3.
- Cirik, S. & Gökpınar, Ş. (1999). Plankton Bilgisi ve Kültürü. Ege Üniversitesi Su Ürünleri Fakültesi ders kitabı, Ege Üniversitesi Basımevi, Bornova, İzmir.
- Çoban, A. (2019). Farklı Azot Kaynaklarının Scenedesmus acutus meyen'un Gelişimi, Lipit ve Protein Miktarı Üzerine Etkileri. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Fırat Üniversitesi, Elazığ.
- Del Campo, J. A., Moreno, J., Rodríguez, H., Angeles Vargas, M., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76(1), 51–59. https://doi.org/10.1016/S0168-1656(99)00178-9.
- Demirel, Z. (2006). Eğirdir Gölünden İzole Edilen Yeşil Mikroalg (Chlorophyta) Scenedesmus protuberans Fris.’İn Antimikrobiyal ve Antioksidan Özelliğinin Araştırılması. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ege Üniversitesi, İzmir.
- Duygu, D. Y. (2019). Growth Kinetics of Scenedesmus obliquus strains in different nutrient media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95-103. https://doi.org/10.17216/limnofish.514166.
- Fabregas, J., Toribio, L., Abalde, J., Cabezas, B., Herrero, C. (1984). Aquacultural Engineering Approach to biomass production of the marine microalga Tetraselmis suecica (kylin) butch using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures, 6(2):141-150.
- Garcia-Moscoso, J.L., Obeid, W., Kumar, S., Hatcher, P.G. (2013). Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates. The Journal of Supercritical Fluids, 82, 183-190.
- Guedes, A.C., Gião, M.S., Seabra, R., Ferreira, A.S., Tamagnini, P., Moradas-Ferreira, P., & Malcata, F.X. (2013). Evaluation of the antioxidant activity of cell extracts from microalgae. Marine drugs, 11(4), 1256-1270.
- Güner, H., Aysel A., (2006). Tohumsuz Bitkiler Sistematiği. Ege Üniversitesi Fen Fakültesi Kitaplar serisi, no:108 VI. Baskı, 1.cilt, 117-120,
- Hu, Q., Sommerfeld M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 54(4):621-39.
- Jayasankar, R., & Polywal, K. (2000). Seasonal variation in the essential micro-nutrients of Gracilaria spp. of Tamil Nadu coast. Indian Journal of Fisheries, 47(4), 349-354.
- Jensen, G.S. (2001). Blue-green algae as an immuno-enhancer and biomodulator. J. Am. Nutraceutical Assoc., 3, 24-30.
- Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607–4638.
- Kar, F. (2019). Scenedesmus dimorphus Biyofilm Kültürlerinde Azot Açlığının Lipid Üretimi Üzerine Etkisi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Dumlupınar Üniversitesi, Kütahya.
- Kurusakız, M. (2020). Scenedesmus intermedius ve Scenedesmus planctonicus Alg Türlerinde Azota Bağlı Lipit İçeriğindeki Değişimlerin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kırıkkale Üniversitesi, Kırıkkale.
- Liu, J., Qiu, W., Song, Y. (2016). Stimulatory effect of auxins on the growth and lipid productivity of Lopez, B. R., Palacios, O. A., Bashan, Y., Hern´andez-Sandoval, F. E., De-Bashan L. E. (2019). Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. Algal Research, 44,1-8.
- Mandal, S., Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84, 281-291.
- Matsunaga, T., Matsumoto, M., Maeda, Y., Sugiyama, H., Sato, R., Tanaka, T. 2009. Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production, Biotechnology letters, 31(9), 1367-1372.
- Mimouni, V., Ulmann, L., Pasquet, V., Mathieu, M., Picot, L., Bougaran, G., ... & Schoefs, B. (2012). The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Current pharmaceutical biotechnology, 13(15), 2733-2750.
- Özalın, G. (2020). Scenedesmus regularis ve Scenedesmus obliquus Alg Türlerinde Azota Bağlı Lipit İçeriğindeki Değişimlerin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Kırıkkale Üniversitesi , Kırıkkale.
- P. Coutteau. (1996). “Micro-Algae,” In: P. Lavens and P. Sorgeloos, Eds., Manual on the Production and Use of Live Food for Aquaculture, FAO Fisheries Technical Paper No. 361, Laboratory of Aquaculture & Artemia Reference Center, University of Gent, Belgium.
- Phinyo, K., Pekkoh, J., & Peerapornpisal, Y. (2017). Distribution and ecological habitat of Scenedesmus and related genera in some freshwater resources of Northern and North-Eastern Thailand. Biodiversitas Journal of Biological Diversity, 18(3), 1092-1099.
- Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science and Technology, 19(1), 31–39.
- Rashid, N., Rehman, M. S. U., Memon, S., Ur Rahman, Z., Lee, K., & Han, J. I. (2013). Current status, barriers and developments in biohydrogen production by microalgae. Renewable and Sustainable Energy Reviews, 22, 571–579.
- Richmond, A. (Ed.). (2004). Handbook of microalgal culture: biotechnology and applied phycology (Vol. 577). Oxford: Blackwell science.
- Rocha, G.S., Pinto, F.H.V., Melão, M.G.G., & Lombardi, A.T. (2015). Growing Scenedesmus quadricauda in used culture media: is it viable?. Journal of applied phycology, 27, 171-178.
https://link.springer.com/article/10.1007/s10811-014-0320-8.
- Shayesteh, H., Raeisossadati, M., Vadiveloo, A., Bahri, P.A., & Moheimani, N. R. (2023). Culture depth effect on Scenedesmus sp. growth, photo-physiology and nutrient removal rate in anaerobically digested abattoir effluent. Journal of applied phycology, 35(2), 567-580. https://link.springer.com/article/10.1007/s10811-023-02915-2.
- Shayesteh, H., Raeisossadati, M., Vadiveloo, A., Bahri, P.A., & Moheimani, N.R. (2023). Culture depth effect on Scenedesmus sp. growth, photo-physiology and nutrient removal rate in anaerobically digested abattoir effluent. Journal of applied phycology, 35(2), 567-580.
- Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1–4), 217–224.
- Stolz, P., & Obermayer, B. (2005). Manufacturing microalgae for skin care. Cosmetic and toiletries, 120(3), 99-106.
- Sukatar, A., (2002). Alg Kültür Yöntemleri. Ege Üni. Fen Fak. Kitapları Serisi No:184, syf: 104.
- Trainor, F. R. (1996). Reproduction in Scenedesmus. Algae. The Korean Journal of Phycology, 11(2), 183-201.
- Xin, L., Hong-Ying, H., Ke, G., Ying-Xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresource Technology, 101, 5494-5500.
- Xin, L., Hong-Ying, H., Yu-Ping, Z. (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102.
- Xu, M., Bernards, M., & Hu, Z. (2014). Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresource technology, 153, 383-387.
- Zhila, N.O, Kalacheva, G.S., Volova, T.G., (2011). Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol, 17:309–315.
- Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and sustainable energy reviews, 41, 1376-1384.Badger, M.R., & Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101.