Research Article
BibTex RIS Cite

Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate

Year 2021, Volume: 64 Issue: 1, 129 - 142, 08.12.2020
https://doi.org/10.25288/tjb.731580

Abstract

The Permo-Carboniferous depositional sequence of Lower Gondwana in Sikkim Lesser Himalaya was investigated through an integrated approach of lithological, petrological, and geochemical studies. Lithologically, it is characterized by glacial diamictite at the base and shale-sandstone facies at the top of a sequence which is interpreted as a glaciomarine deposit. Coarser sandstone and massive diamictite composed of quartz, feldspar, muscovite, zircon, and other lithic fragments are observed in thin section. Geochemistry of all studied samples from the Rangit Pebble Slate Formation shows the dominance of silicon dioxide compared to other elemental oxides. The tectonic discrimination diagram positively infers passive margin sedimentation from a felsic-rich provenance. Chemical Index of Alteration was used to depict the weathering trends of all studied samples which reflect paleo-sedimentation under humid to sub-humid climatic conditions.

Supporting Institution

Sikkim University

Project Number

No

Thanks

Thanks for providing this standard platform for publishing a research article.

References

  • Acharyya, S.K. (1971). Rangit Pebble-Slate A New Formation from Darjeeling Foothills. Indian Minerals, Geological Survey of India, 25(1), 60-64.
  • Acharyya, S.K., Ray, K.K. (1977). Geology of the Darjeeling-Sikkim Himalaya, guide to excursion No.4. 4th International Gondwana Symposium, India. 23 pp.
  • Aristizabal, E., Roser, B. & Yokota, S. 2005. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburra´ Valley, northern Colombian Andes. Engineering Geology, 81, 389–406.
  • Bhatia M.R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611-627.
  • Bhatia M.R. & Crook K.A.W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193. https://doi.org/10.1007/BF00375292
  • Chakraborty, S., Anczkiewicz, R., Gaidies, F., Rubatto, D., Sorcar, N., Faak, K., Mukhopadhyay, D.K., Dasgupta, S. (2016). A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. Journal of Metamorphic Geology 34, 785–803. https://doi.org/10.1111/jmg.12200
  • Condie, K.C., Marais, D.J.D., Abbott, D. (2001). Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes and paleoclimates. Precambrian Research, 106(3-4), 239–260. https://doi.org/10.1016/S0301-9268(00)00097-8
  • Crook, K.A.W. (1974). Lithogenesis and geotectonics: the significance of compositional variations in flyscharenites (graywackes), In: R.H. Dott, & R.H. Shaver, (Eds.), Modern and ancient geosynclinal sedimentation (pp304-310). SEPM Special Publication, V.:1 https://doi.org/10.2110/pec.74.19.0304
  • Dabard, M.P. (1990). Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology 69(1-2), 45-58. https://doi.org/10.1016/0037-0738(90)90100-8
  • Dickinson, W.R. & Suczek, C.A. 1979: Plate tectonics and sandstone compositions. The American Association of Petroleum Geologists Bulletin, 63(12), 2164-2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D
  • Dickinson, W.R., Beard L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94(2), 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
  • Dobrzinski, N., Bahlburg, H., Strauss, H. & Zhang, Q.R. (2004). Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform, South China. In: G. Jenkins, M. McMenamin, C.P. McKay & L. Sohl (Eds), The Extreme Proterozoic: Geology, Geochemistry and Climate (pp. 13-32). American Geophysical Union Monograph Series, 146.
  • Geological Survey of India (GSI), (2012). Geology and mineral resources of the state of India. (Miscellaneous Publication No.30, Part-19), Sikkim, 19-21.
  • Gupta, S.S & Roy, S.S. (1981). Pebble-Slates in parts of eastern Himalaya-evidence for Pre-Gondwana deformation in Himalayan rocks. Journal Geological Society of India, 122, 346-350.
  • Kahmann, J. A., Seaman, J. III & Driese, S.G. (2008). Evaluating trace elements as paleoclimate indicators: multivariate statistical analysis of Late Mississippian Pennington Formation paleosols, Kentucky, U.S.A. Journal of Geology, 116(3) 254–268.
  • Mahanta, Bashab N., Syngai, B.R., Sarmah, R.K. Goswami, T. K. & Kumar, A. (2020). Geochemical signatures of Lower Gondwana sandstones of eastern Arunachal Himalayas, India: Implications for tectonic setting, provenance and degree of weathering. Russian Journal of Earth Sciences, 20 (2), Article ES2003. https://doi.org/10.2205/2020ES000698
  • McLennan, S.M., Hemming S., McDaniel, D.K. & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J. Johnsson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (21-40). Geological Society of America, Spec. Paper, 284. https://doi.org/10.1130/SPE284-p21
  • Mukherjee, S., Dey, A., Snyal, S. & Sengupta, P. (2019). Proterozoic Crustal Evolution of the Chotanagpur Granite Gneissic Complex, Jharkhand-Bihar-West Bengal, India: Current Status and Future Prospect. In: S. Mukherjee (Ed), Tectonics and Structural Geology: Indian Context. Springer Geology.
  • Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.
  • Priya, R.K., Tewari V.C.& Ranjan, R.K. (2019): Permian Tethyan transgression in Sikkim-Darjeeling Himalaya with special reference to the Paleoclimatic event. Bulletin of Nepal Geological Society, (36), 233-240.
  • Raichaudhri, A.K, (2002). Study of marine mega-invertebrates of the Permian rocks of Darjeeling-Sikkim Himalaya. Rec., Geol. Surv. India, E.R,133(3), 25-26.
  • Rashid, S.A. & Ganai, J.A. (2015). Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India. Arabian Journal of Geosciences, 8, 9345–9363. https://doi.org/10.1007/s12517-015-1877-5
  • Ray, S.K. & Neogi, S. (2011). Extent and analogues of the Rangit window in the Sikkim Himalaya. Indian Journal of Geosciences 65 (4), 275-286.
  • Roser, B.P. & Korsch, R.J. 1986: Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology 94(5), 635-650. https://doi.org/10.1086/629071
  • Roy, S.S. (1973). Gondwana Pebble Slate in the Rangit valley tectonic window, Darjeeling Himalayas and its significance. Journal of Geological Society of India, 14(1), 31-39.
  • Scheffler, K., Hoernes, S. & Schwark, L. (2003). Global changes during carboniferous– Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology, 31(7), 605–608. https://doi.org/10.1130/0091-7613(2003)031<0605:GCDCGO>2.0.CO;2
  • Suttner, L.J. & Dutta, P.K. (1986). Alluvial sandstone composition and paleoclimate; I Framework mineralogy. Journal of Sedimentary Research 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
  • Takahashi, G. (2015). Sample preparation for X-ray fluorescence analysis III. Pressed and loose powder methods. Rigaku Journal, 31(1), 26–30.
  • Tewari, V.C. (2011). Stromatolites, organic walled microorganisms, Laser Raman Spectroscopy and Confocal Laser Scanning Microscopy of the Meso-Neoproterozoic Buxa Formation, Ranjit Window, Sikkim Lesser Himalaya, NE India. In: V.C. Tewari & J. Seckbach (Eds.), Stromatolites: Interaction of Microbes with Sediments, Cellular Origin, Life in Extreme Habitats and Astrobiology, 18 (pp. 495- 524), Springer Science Business B.V. 2011.

Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate

Year 2021, Volume: 64 Issue: 1, 129 - 142, 08.12.2020
https://doi.org/10.25288/tjb.731580

Abstract

The Permo-Carboniferous depositional sequence of Lower Gondwana in Sikkim Lesser Himalaya was investigated through an integrated approach of lithological, petrological, and geochemical studies. Lithologically, it is characterized by glacial diamictite at the base and shale-sandstone facies at the top of a sequence which is interpreted as a glaciomarine deposit. Coarser sandstone and massive diamictite composed of quartz, feldspar, muscovite, zircon, and other lithic fragments are observed in thin section. Geochemistry of all studied samples from the Rangit Pebble Slate Formation shows the dominance of silicon dioxide compared to other elemental oxides. The tectonic discrimination diagram positively infers passive margin sedimentation from a felsic-rich provenance. Chemical Index of Alteration was used to depict the weathering trends of all studied samples which reflect paleo-sedimentation under humid to sub-humid climatic conditions.

Project Number

No

References

  • Acharyya, S.K. (1971). Rangit Pebble-Slate A New Formation from Darjeeling Foothills. Indian Minerals, Geological Survey of India, 25(1), 60-64.
  • Acharyya, S.K., Ray, K.K. (1977). Geology of the Darjeeling-Sikkim Himalaya, guide to excursion No.4. 4th International Gondwana Symposium, India. 23 pp.
  • Aristizabal, E., Roser, B. & Yokota, S. 2005. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburra´ Valley, northern Colombian Andes. Engineering Geology, 81, 389–406.
  • Bhatia M.R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6), 611-627.
  • Bhatia M.R. & Crook K.A.W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193. https://doi.org/10.1007/BF00375292
  • Chakraborty, S., Anczkiewicz, R., Gaidies, F., Rubatto, D., Sorcar, N., Faak, K., Mukhopadhyay, D.K., Dasgupta, S. (2016). A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. Journal of Metamorphic Geology 34, 785–803. https://doi.org/10.1111/jmg.12200
  • Condie, K.C., Marais, D.J.D., Abbott, D. (2001). Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes and paleoclimates. Precambrian Research, 106(3-4), 239–260. https://doi.org/10.1016/S0301-9268(00)00097-8
  • Crook, K.A.W. (1974). Lithogenesis and geotectonics: the significance of compositional variations in flyscharenites (graywackes), In: R.H. Dott, & R.H. Shaver, (Eds.), Modern and ancient geosynclinal sedimentation (pp304-310). SEPM Special Publication, V.:1 https://doi.org/10.2110/pec.74.19.0304
  • Dabard, M.P. (1990). Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology 69(1-2), 45-58. https://doi.org/10.1016/0037-0738(90)90100-8
  • Dickinson, W.R. & Suczek, C.A. 1979: Plate tectonics and sandstone compositions. The American Association of Petroleum Geologists Bulletin, 63(12), 2164-2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D
  • Dickinson, W.R., Beard L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A. & Ryberg, P.T. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94(2), 222-235. https://doi.org/10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
  • Dobrzinski, N., Bahlburg, H., Strauss, H. & Zhang, Q.R. (2004). Geochemical climate proxies applied to the Neoproterozoic glacial succession on the Yangtze Platform, South China. In: G. Jenkins, M. McMenamin, C.P. McKay & L. Sohl (Eds), The Extreme Proterozoic: Geology, Geochemistry and Climate (pp. 13-32). American Geophysical Union Monograph Series, 146.
  • Geological Survey of India (GSI), (2012). Geology and mineral resources of the state of India. (Miscellaneous Publication No.30, Part-19), Sikkim, 19-21.
  • Gupta, S.S & Roy, S.S. (1981). Pebble-Slates in parts of eastern Himalaya-evidence for Pre-Gondwana deformation in Himalayan rocks. Journal Geological Society of India, 122, 346-350.
  • Kahmann, J. A., Seaman, J. III & Driese, S.G. (2008). Evaluating trace elements as paleoclimate indicators: multivariate statistical analysis of Late Mississippian Pennington Formation paleosols, Kentucky, U.S.A. Journal of Geology, 116(3) 254–268.
  • Mahanta, Bashab N., Syngai, B.R., Sarmah, R.K. Goswami, T. K. & Kumar, A. (2020). Geochemical signatures of Lower Gondwana sandstones of eastern Arunachal Himalayas, India: Implications for tectonic setting, provenance and degree of weathering. Russian Journal of Earth Sciences, 20 (2), Article ES2003. https://doi.org/10.2205/2020ES000698
  • McLennan, S.M., Hemming S., McDaniel, D.K. & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J. Johnsson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (21-40). Geological Society of America, Spec. Paper, 284. https://doi.org/10.1130/SPE284-p21
  • Mukherjee, S., Dey, A., Snyal, S. & Sengupta, P. (2019). Proterozoic Crustal Evolution of the Chotanagpur Granite Gneissic Complex, Jharkhand-Bihar-West Bengal, India: Current Status and Future Prospect. In: S. Mukherjee (Ed), Tectonics and Structural Geology: Indian Context. Springer Geology.
  • Nesbitt, H.W. & Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715-717.
  • Priya, R.K., Tewari V.C.& Ranjan, R.K. (2019): Permian Tethyan transgression in Sikkim-Darjeeling Himalaya with special reference to the Paleoclimatic event. Bulletin of Nepal Geological Society, (36), 233-240.
  • Raichaudhri, A.K, (2002). Study of marine mega-invertebrates of the Permian rocks of Darjeeling-Sikkim Himalaya. Rec., Geol. Surv. India, E.R,133(3), 25-26.
  • Rashid, S.A. & Ganai, J.A. (2015). Preservation of glacial and interglacial phases in Tethys Himalaya: evidence from geochemistry and petrography of Permo-Carboniferous sandstones from the Spiti region, Himachal Pradesh, India. Arabian Journal of Geosciences, 8, 9345–9363. https://doi.org/10.1007/s12517-015-1877-5
  • Ray, S.K. & Neogi, S. (2011). Extent and analogues of the Rangit window in the Sikkim Himalaya. Indian Journal of Geosciences 65 (4), 275-286.
  • Roser, B.P. & Korsch, R.J. 1986: Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology 94(5), 635-650. https://doi.org/10.1086/629071
  • Roy, S.S. (1973). Gondwana Pebble Slate in the Rangit valley tectonic window, Darjeeling Himalayas and its significance. Journal of Geological Society of India, 14(1), 31-39.
  • Scheffler, K., Hoernes, S. & Schwark, L. (2003). Global changes during carboniferous– Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology, 31(7), 605–608. https://doi.org/10.1130/0091-7613(2003)031<0605:GCDCGO>2.0.CO;2
  • Suttner, L.J. & Dutta, P.K. (1986). Alluvial sandstone composition and paleoclimate; I Framework mineralogy. Journal of Sedimentary Research 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D
  • Takahashi, G. (2015). Sample preparation for X-ray fluorescence analysis III. Pressed and loose powder methods. Rigaku Journal, 31(1), 26–30.
  • Tewari, V.C. (2011). Stromatolites, organic walled microorganisms, Laser Raman Spectroscopy and Confocal Laser Scanning Microscopy of the Meso-Neoproterozoic Buxa Formation, Ranjit Window, Sikkim Lesser Himalaya, NE India. In: V.C. Tewari & J. Seckbach (Eds.), Stromatolites: Interaction of Microbes with Sediments, Cellular Origin, Life in Extreme Habitats and Astrobiology, 18 (pp. 495- 524), Springer Science Business B.V. 2011.
There are 29 citations in total.

Details

Primary Language English
Subjects General Geology
Journal Section Makaleler - Articles
Authors

Raj Kumar Prıya 0000-0003-0918-8663

Vinod Tewari This is me 0000-0003-3392-1298

Rakesh Ranjan This is me 0000-0001-8745-3923

Project Number No
Publication Date December 8, 2020
Submission Date May 3, 2020
Acceptance Date September 16, 2020
Published in Issue Year 2021 Volume: 64 Issue: 1

Cite

APA Prıya, R. K., Tewari, V., & Ranjan, R. (2021). Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate. Türkiye Jeoloji Bülteni, 64(1), 129-142. https://doi.org/10.25288/tjb.731580
AMA Prıya RK, Tewari V, Ranjan R. Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate. Geol. Bull. Turkey. January 2021;64(1):129-142. doi:10.25288/tjb.731580
Chicago Prıya, Raj Kumar, Vinod Tewari, and Rakesh Ranjan. “Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate”. Türkiye Jeoloji Bülteni 64, no. 1 (January 2021): 129-42. https://doi.org/10.25288/tjb.731580.
EndNote Prıya RK, Tewari V, Ranjan R (January 1, 2021) Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate. Türkiye Jeoloji Bülteni 64 1 129–142.
IEEE R. K. Prıya, V. Tewari, and R. Ranjan, “Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate”, Geol. Bull. Turkey, vol. 64, no. 1, pp. 129–142, 2021, doi: 10.25288/tjb.731580.
ISNAD Prıya, Raj Kumar et al. “Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate”. Türkiye Jeoloji Bülteni 64/1 (January 2021), 129-142. https://doi.org/10.25288/tjb.731580.
JAMA Prıya RK, Tewari V, Ranjan R. Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate. Geol. Bull. Turkey. 2021;64:129–142.
MLA Prıya, Raj Kumar et al. “Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate”. Türkiye Jeoloji Bülteni, vol. 64, no. 1, 2021, pp. 129-42, doi:10.25288/tjb.731580.
Vancouver Prıya RK, Tewari V, Ranjan R. Geochemical and Petrological Studies of Permo-Carboniferous Sandstones from the Rangit Pebble-Slate Formation, Sikkim Lesser Himalaya, India: Implication for Provenance, Tectonic Setting, and Paleoclimate. Geol. Bull. Turkey. 2021;64(1):129-42.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php