Research Article
BibTex RIS Cite

ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations

Year 2023, Volume: 7 Issue: 2, 83 - 90, 07.09.2023
https://doi.org/10.26650/tjbc.1326451

Abstract

Objective: Apis mellifera, in the order Hymenoptera, are social insects, also known as honey bees. Türkiye has many different honey bee ecotypes and subspecies. Examination of genetic diversity and evolutionary relationships of colonies in nine different locations in Türkiye was carried out using ISSR primers. Materials and Methods: Apis mellifera samples were collected from Çorum, Elazığ, Eskişehir, Kütahya, İzmir, Manisa, Antalya, Samsun, and Muğla. The Lifton method was used for DNA extraction from 180 honey bees. DNA samples were amplified using six ISSR primers. Results: From the amplification of 180 individuals with 6 ISSR primers, 283 polymorphic loci were identified. Genetic diversity data (Na, Ne, h, I) were obtained for nine populations from 283 loci. In all data on the calculated genetic diversity, the lowest values were found in the Samsun population, and the highest values were found in the Manisa population. The gene flow level calculated from the genetic differentiation value was found to be 0.22. Conclusion: Genetic diversity has a role in the adaptation of species to changing environmental conditions and it is one of the raw materials of evolution. Herein, we preferred ISSR markers to identify the genetic structure of honey bees. The genetic diversity of honey bees has been found to be lower compared to previous studies. This variability may be a result of the ecological, climatic conditions, and biogeographic differences of Anatolia. The studies to be carried out with more examples from more locations related to honey bees in Türkiye will contribute to the clear identification of the genetic structure of this organism. Additionally, using other marker systems will help to clarify the status of populations in Türkiye.

References

  • Ahmad, K.M.S. (2018). Genetic characterisation of honey bees (Apis mellifera) populations from Kurdistan Region of Iraq via ISSR markers. Annual Research & Review in Biology, 28(5), 1-9. https://doi.org/10.9734/ARRB/2018/42772 google scholar
  • Al-Otaibi, S.A. (2008). Genetic variability in mite-resistant honey bee using ISSR molecular markers. Arab Journal of Biotechnology, 11(2), 241-252. google scholar
  • Baysal, Ö., Mercati, F., Ikten, H., Yıldız, R.Ç., Carimi, F., Aysan, Y. & Silva, J.A.T. (2011). Clavibacter michiganensis subsp. michiganesis: Tracking strains using their genetic differentiations by ISSR markers in Southern Turkey. Physiological and Molecular Plant Pathology, 75, 113-119. http://doi.org/10.1016/j.pmpp.2010.10.002 google scholar
  • Bender, W., Spierer, P. & Hogness, D.S. (1983). Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and bithorax complex in Drosophila melanogaster. Journal of Molecular Biology, 168, 17-33. https://doi.org/10.1016/s0022-2836(83)80320-9 google scholar
  • Cane, J.H. (2008). Encyclopedia of Entomology. In J.H. Capinera (Eds), Bees (Hymenoptera:Apoidea:Apiformes) (pp. 419-434). New York, USA: Springer Science & Business Media. google scholar
  • Ceksteryte, V., Paplauskiene, V., Tamasauskiene, D., Pasakinskiene, I.& Mazeikiene, I. (2012). Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism. Apidologie, 43, 652-662. http://dx.doi.org/10.1007/s13592-012-0140-2 google scholar
  • Dusinsk, R., Kdela, M., Stloukalov, V & Jedlicka, L. (2006). Use of inter-simple sequence repeat (ISSR) markers for discrimination between and within species of blackflies (Diptera:Simulidae). Biologia, 61(3), 299-304. http://dx.doi.org/10.2478/s11756-006-0055-3 google scholar
  • Hamrick, J., Godt, M. & Shermen-Broyless, S. (1992). Factors influencing levels of genetic diversty in woody plant species. New Forests, 6, 95-124. https://doi.org/10.1007/BF00120641 google scholar
  • Ilyasov, R.A., Lee, M.L., Takahashi, J.I., Kwon, H.W. & Nikolenko, A.G. (2020). A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences, 27(12), 3615-3621. http://dx.doi.org/10.1016/j.sjbs.2020.08.001 google scholar
  • Franck, P., Garnery, L., Solignac, M. & Cornuet, J.M. (2000). Molecular confirmation of a fourth lineage in honeybees from the near east. Apidologie, 31, 167-180. https://doi.org/10.1051/ apido:2000114 google scholar
  • Hundsdoerfer, A.K., Kitching, I. & Wink, M. (2005). The phylogeny of the Hyles euphorbiae complex (Lepidoptera: Sphingidae): Molecular evidence from sequence data and ISSR-PCR fingerprints. Organisms Diversity & Evolution, 5, 173-198. https://doi.org/10.1016/j.ode.2004.11.012 google scholar
  • Karakaş, E.G. 2013. Genetic impact of migratory beekeeping: Genetic variation between stationary and migratory populations of honey bees (Apis mellifera L.) in Turkey (Master thesis). Middle East Technical University, Department of Biology. google scholar
  • Kilani, M. (1999). Nosemosis. In M.E. Colin, B.V. Ball, M. Kilani (Eds.), Bee Disease Diagnosis: Zaragoza Ciheam (pp. 99 - 106). google scholar
  • Kimura, M. & Crow, J. (1978). Effect of overall phenotypic selection on genetic change at individual loci. Proceedings of the National Academy of Science, 75, 6168-6171. https://doi.org/10.1073/ pnas.75.12.6168 google scholar
  • Kükrer, M. 2013. Genetic Diversity of Honey Bee Populations in Turkey based on Microsatellite Markers: A Comparison between migratory versus Stationary Apiaries and Isolated Regions versus Regions Open to Migratory Beekeeping (Master thesis). Middle East Technical University, Graduate School of Natural and Applied Sciences. google scholar
  • Nei, M. (1987). Molecular Evolutionary Genetics. New York, Columbia University Press. google scholar
  • Paplauskiene, V, Ceksteryte, V., Tamasauskiene, D. & Racys, J. (2006). The use of ISSR method for the assessment of bee genetic diversity. Biologia, 3, 16-20. google scholar
  • Peakall, R. & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/ bioinformatics/bts460 google scholar
  • Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L. & Jamali, S. (2016). Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62, 54-58. http://dx.doi. org/10.14715/cmb/2016.62.4.10 google scholar
  • Radjabi, R., Sarafrazi, A., Tarang, A., Kamali, K. & Tirgari, S. (2012). Intraspecific biodiversity of Iranian local races of silkworm Bombyx mori by Issr (Inter-Simple Sequence Repeat) molecular marker. World Journal of Zoology, 7(1), 17-22. google scholar
  • Ruttner, F. (1988). Biogeography and taxonomy of honeybees. New York, USA: Springer Science & Business Media. google scholar
  • Sheppard, W.S. & Smith, D.R. (2000). Identification of African-derived bees in Americas: a survey of methods. Annals of the Entomological Society of America, 93, 159-176. https://doi. org/10.1603/0013-8746(2000)093[0159:IOADBI]2.0.CO;2 google scholar
  • Shouhani, H., Dousti, A.F., Radjabi, R. & Zarei, M. (2014). Application of ISSR to study the genetic diversity of honeybee (Apis mellifera L.) populations in some areas of Iran. Journal of BioScience and Biotechnology, 3(2), 127-131. http://dx.doi. org/10.13140/2.1.1140.5448 google scholar
  • Slatkin, M. (1987). Gene flow and geographic structure of natural populations. Science, 236, 787- 792. google scholar
  • Tunca, R.I., Kence, M. (2011). Genetic diversity of honey bee (Apis mellifera L.: Hymenoptera: Apidae) populations in Turkey revealed by RAPD markers. African Journal of Agricultural Research, 6(29), 6217-6225. https://doi.org/10.5897/ AJAR10.386 google scholar
  • Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323-354. google scholar
  • Yeh, F.C., Yang, R.C. & Boyle, T. (1999). POPGENE Version 1.32: Microsoft Window-Based Freeware for Population Genetics Analysis. Edmonton, University of Alberta. google scholar
  • Zietkiewicz, E., Rafalski, A., Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176183. https://doi.org/10.1006/geno.1994.1151 google scholar
Year 2023, Volume: 7 Issue: 2, 83 - 90, 07.09.2023
https://doi.org/10.26650/tjbc.1326451

Abstract

References

  • Ahmad, K.M.S. (2018). Genetic characterisation of honey bees (Apis mellifera) populations from Kurdistan Region of Iraq via ISSR markers. Annual Research & Review in Biology, 28(5), 1-9. https://doi.org/10.9734/ARRB/2018/42772 google scholar
  • Al-Otaibi, S.A. (2008). Genetic variability in mite-resistant honey bee using ISSR molecular markers. Arab Journal of Biotechnology, 11(2), 241-252. google scholar
  • Baysal, Ö., Mercati, F., Ikten, H., Yıldız, R.Ç., Carimi, F., Aysan, Y. & Silva, J.A.T. (2011). Clavibacter michiganensis subsp. michiganesis: Tracking strains using their genetic differentiations by ISSR markers in Southern Turkey. Physiological and Molecular Plant Pathology, 75, 113-119. http://doi.org/10.1016/j.pmpp.2010.10.002 google scholar
  • Bender, W., Spierer, P. & Hogness, D.S. (1983). Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and bithorax complex in Drosophila melanogaster. Journal of Molecular Biology, 168, 17-33. https://doi.org/10.1016/s0022-2836(83)80320-9 google scholar
  • Cane, J.H. (2008). Encyclopedia of Entomology. In J.H. Capinera (Eds), Bees (Hymenoptera:Apoidea:Apiformes) (pp. 419-434). New York, USA: Springer Science & Business Media. google scholar
  • Ceksteryte, V., Paplauskiene, V., Tamasauskiene, D., Pasakinskiene, I.& Mazeikiene, I. (2012). Genetic characterization of Lithuanian honeybee lines based on ISSR polymorphism. Apidologie, 43, 652-662. http://dx.doi.org/10.1007/s13592-012-0140-2 google scholar
  • Dusinsk, R., Kdela, M., Stloukalov, V & Jedlicka, L. (2006). Use of inter-simple sequence repeat (ISSR) markers for discrimination between and within species of blackflies (Diptera:Simulidae). Biologia, 61(3), 299-304. http://dx.doi.org/10.2478/s11756-006-0055-3 google scholar
  • Hamrick, J., Godt, M. & Shermen-Broyless, S. (1992). Factors influencing levels of genetic diversty in woody plant species. New Forests, 6, 95-124. https://doi.org/10.1007/BF00120641 google scholar
  • Ilyasov, R.A., Lee, M.L., Takahashi, J.I., Kwon, H.W. & Nikolenko, A.G. (2020). A revision of subspecies structure of western honey bee Apis mellifera. Saudi Journal of Biological Sciences, 27(12), 3615-3621. http://dx.doi.org/10.1016/j.sjbs.2020.08.001 google scholar
  • Franck, P., Garnery, L., Solignac, M. & Cornuet, J.M. (2000). Molecular confirmation of a fourth lineage in honeybees from the near east. Apidologie, 31, 167-180. https://doi.org/10.1051/ apido:2000114 google scholar
  • Hundsdoerfer, A.K., Kitching, I. & Wink, M. (2005). The phylogeny of the Hyles euphorbiae complex (Lepidoptera: Sphingidae): Molecular evidence from sequence data and ISSR-PCR fingerprints. Organisms Diversity & Evolution, 5, 173-198. https://doi.org/10.1016/j.ode.2004.11.012 google scholar
  • Karakaş, E.G. 2013. Genetic impact of migratory beekeeping: Genetic variation between stationary and migratory populations of honey bees (Apis mellifera L.) in Turkey (Master thesis). Middle East Technical University, Department of Biology. google scholar
  • Kilani, M. (1999). Nosemosis. In M.E. Colin, B.V. Ball, M. Kilani (Eds.), Bee Disease Diagnosis: Zaragoza Ciheam (pp. 99 - 106). google scholar
  • Kimura, M. & Crow, J. (1978). Effect of overall phenotypic selection on genetic change at individual loci. Proceedings of the National Academy of Science, 75, 6168-6171. https://doi.org/10.1073/ pnas.75.12.6168 google scholar
  • Kükrer, M. 2013. Genetic Diversity of Honey Bee Populations in Turkey based on Microsatellite Markers: A Comparison between migratory versus Stationary Apiaries and Isolated Regions versus Regions Open to Migratory Beekeeping (Master thesis). Middle East Technical University, Graduate School of Natural and Applied Sciences. google scholar
  • Nei, M. (1987). Molecular Evolutionary Genetics. New York, Columbia University Press. google scholar
  • Paplauskiene, V, Ceksteryte, V., Tamasauskiene, D. & Racys, J. (2006). The use of ISSR method for the assessment of bee genetic diversity. Biologia, 3, 16-20. google scholar
  • Peakall, R. & Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537-2539. https://doi.org/10.1093/ bioinformatics/bts460 google scholar
  • Rahimi, A., Mirmoayedi, A., Kahrizi, D., Zarei, L. & Jamali, S. (2016). Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62, 54-58. http://dx.doi. org/10.14715/cmb/2016.62.4.10 google scholar
  • Radjabi, R., Sarafrazi, A., Tarang, A., Kamali, K. & Tirgari, S. (2012). Intraspecific biodiversity of Iranian local races of silkworm Bombyx mori by Issr (Inter-Simple Sequence Repeat) molecular marker. World Journal of Zoology, 7(1), 17-22. google scholar
  • Ruttner, F. (1988). Biogeography and taxonomy of honeybees. New York, USA: Springer Science & Business Media. google scholar
  • Sheppard, W.S. & Smith, D.R. (2000). Identification of African-derived bees in Americas: a survey of methods. Annals of the Entomological Society of America, 93, 159-176. https://doi. org/10.1603/0013-8746(2000)093[0159:IOADBI]2.0.CO;2 google scholar
  • Shouhani, H., Dousti, A.F., Radjabi, R. & Zarei, M. (2014). Application of ISSR to study the genetic diversity of honeybee (Apis mellifera L.) populations in some areas of Iran. Journal of BioScience and Biotechnology, 3(2), 127-131. http://dx.doi. org/10.13140/2.1.1140.5448 google scholar
  • Slatkin, M. (1987). Gene flow and geographic structure of natural populations. Science, 236, 787- 792. google scholar
  • Tunca, R.I., Kence, M. (2011). Genetic diversity of honey bee (Apis mellifera L.: Hymenoptera: Apidae) populations in Turkey revealed by RAPD markers. African Journal of Agricultural Research, 6(29), 6217-6225. https://doi.org/10.5897/ AJAR10.386 google scholar
  • Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323-354. google scholar
  • Yeh, F.C., Yang, R.C. & Boyle, T. (1999). POPGENE Version 1.32: Microsoft Window-Based Freeware for Population Genetics Analysis. Edmonton, University of Alberta. google scholar
  • Zietkiewicz, E., Rafalski, A., Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176183. https://doi.org/10.1006/geno.1994.1151 google scholar
There are 28 citations in total.

Details

Primary Language English
Subjects Conservation and Biodiversity
Journal Section Research Articles
Authors

Ömer Yüzer 0000-0003-0209-324X

Ersin Doğaç 0000-0003-4426-2187

Alper Tonguç 0000-0002-2613-3114

Evin Günenç 0000-0001-6201-1256

Publication Date September 7, 2023
Submission Date July 12, 2023
Acceptance Date August 4, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Yüzer, Ö., Doğaç, E., Tonguç, A., Günenç, E. (2023). ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. Turkish Journal of Bioscience and Collections, 7(2), 83-90. https://doi.org/10.26650/tjbc.1326451
AMA Yüzer Ö, Doğaç E, Tonguç A, Günenç E. ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. tjbc. September 2023;7(2):83-90. doi:10.26650/tjbc.1326451
Chicago Yüzer, Ömer, Ersin Doğaç, Alper Tonguç, and Evin Günenç. “ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis Mellifera L., 1758) Populations”. Turkish Journal of Bioscience and Collections 7, no. 2 (September 2023): 83-90. https://doi.org/10.26650/tjbc.1326451.
EndNote Yüzer Ö, Doğaç E, Tonguç A, Günenç E (September 1, 2023) ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. Turkish Journal of Bioscience and Collections 7 2 83–90.
IEEE Ö. Yüzer, E. Doğaç, A. Tonguç, and E. Günenç, “ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations”, tjbc, vol. 7, no. 2, pp. 83–90, 2023, doi: 10.26650/tjbc.1326451.
ISNAD Yüzer, Ömer et al. “ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis Mellifera L., 1758) Populations”. Turkish Journal of Bioscience and Collections 7/2 (September 2023), 83-90. https://doi.org/10.26650/tjbc.1326451.
JAMA Yüzer Ö, Doğaç E, Tonguç A, Günenç E. ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. tjbc. 2023;7:83–90.
MLA Yüzer, Ömer et al. “ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis Mellifera L., 1758) Populations”. Turkish Journal of Bioscience and Collections, vol. 7, no. 2, 2023, pp. 83-90, doi:10.26650/tjbc.1326451.
Vancouver Yüzer Ö, Doğaç E, Tonguç A, Günenç E. ISSR-Based Population Genetic Structure of Some Turkish Honeybee (Apis mellifera L., 1758) Populations. tjbc. 2023;7(2):83-90.