Research Article
BibTex RIS Cite

Bactericidal and antibiofilm activities of copper against biofilm producer pathogens colonized on orthopedic implants

Year 2018, Volume: 9 Issue: 1, 13 - 18, 01.03.2018
https://doi.org/10.18663/tjcl.300359

Abstract

Background:
New and alternative antimicrobial and antibiofilm agent discovery has gained attention since antibiotic resistance
was easily developed.
It has been accepted that metals have
antimicrobial activity. Abiotic surfaces such as orthopedic implants that are
impregnated with copper can prevent colonization of biofilm producer pathogens,
and can detach biofilms produced on implants. In this study, the effects of
copper against planktonic bacteria and biofilm embedded bacteria adhered on kirschner
wire orthopedic
implant were studied.

Material
and Methods:
MICs, MBCs and MBEC of copper against main biofilm producer pathogens
such as methicillin resistance Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), methicillin
resistance Staphylococcus epidermidis (MRSE), methicillin sensitive Staphylococcus epidermidis (MSSE),
Escherichia coli (E. coli),
Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P.
aeruginosa
), Proteus mirabilis (P. mirabilis)
colonized on kirschner wire orthopedic implant were determined.

Results:
MICs,
MBCs, and MBECs of copper against pathogens were ranged from 0.063 to 0.75
mg/mL. This study revealed that 0.75
mg/mL of copper inhibit all isolates
analyzed in this study. The most tolerant pathogen was MRSA. The activities of
copper against biofilm embedded
bacteria and planktonic bacteria were found to be the same.

Conclusion:
Indwelling
medical devices such as orthopedic wires, prosthetics can be impregnated by
copper to overcome colonization and production of matured biofilm on indwelling
devices, consequently, implant associated infections.









 

References

  • 1. Kırmusaoğlu S. Staphylococcal biofilms: Pathogenicity, mechanism and regulation of biofilm formation by quorum sensing system and antibiotic resistance mechanisms of biofilm embedded microorganisms. In: Dharumadurai Dhanasekaran and Nooruddin Thajuddin (ed). Microbial Biofilms - Importance and Applications. Croatia, Eastern Europe: Intech; 2016: 189 -209.
  • 2. Bjarnsholt T, Moser C, Jensen P, Hoiby N. Biofilm Infections. New York Dordrecht Heidelberg London: Springer Science Business Media, LLC; 2011: 215-25.
  • 3. Gandelman G, Frishman WH, Wiese C et al. Intravascular device infections: epidemiology, diagnosis, and management. Cardiology Review. 2007; 15: 13-23.
  • 4. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cellular Microbiology. 2009; 11: 1034-43.
  • 5. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002; 15: 167–93.
  • 6. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005; 26: 6984–90.
  • 7. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Current Opinion in Infectious Diseases. 2006; 19: 349–56.
  • 8. Stoodley P, Hall-Stoodley L, Costerton B, DeMeo P, Shirtliff M, Gawalt E, Kathju S. Biofilms, Biomaterials, and Device-Related Infections. In: Modjarrad K and Ebnesajjad S (ed). Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier Inc. 2013: 368.
  • 9. Casey AL, Adams D, Karpanen TJ et al. Role of copper in reducing hospital environment contamination. Journal of Hospital Infection.2010; 74: 72–77.
  • 10. Beeton ML, Aldrich-Wright JR, Bolhuis A. The antimicrobial and antibiofilm activities of copper(II) complexes. Journal of Inorganic Biochemistry. 2014; 140: 167–72.
  • 11. Hans M, Erbe A, Mathews S, Chen Y, Solioz M , Mücklich F. Role of Copper Oxides in Contact Killing of Bacteria. Langmuir. 2013; 29: 16160−66.
  • 12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S23. Wayne PA: Clinical and Laboratory Standards Institute. 2013. 13. Freeman J, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology. 1989; 42: 872-74.
  • 14. Christensen GD, Simpson WA, Younger JJ et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microiology. 1985; 22: 996-1006.
  • 15. Saginur R, Denis MS, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. Multiple Combination Bactericidal Testing of Staphylococcal Biofilms from Implant-Associated Infections. Antimicrobial Agents and Chemotherapy. 2006; 50: 55-61.
  • 16. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: New Technology for rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. Journal of Clinical Microbiology. 1999; 37: 1771-76. 17. Novick RP. Staphylococcal plasmids and their replication. Annual Review Microbiology. 1989; 43: 537–65.
  • 18. Plata K, Rosato AE, Wegrzyn G. Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica. 2009; 56: 597-612.
  • 19. Reyes-Jara A, Cordero N, Aguirre J, Troncoso M, Figueroa G. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis. Frontiers in Microbiology. 2016; 7: 626.
  • 20. Koseoglu Eser O, Ergin A, Hascelik G. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens. Current Microbiology. 2015; 71: 291–95.
  • 21. Chudzik B, Czernel G, Miaskowski A, Gagoś M. Amphotericin B-copper(II) complex shows improved therapeutic index in vitro. European Journal of Pharmaceutical Sciences. 2017; 97: 9–21.
  • 22. Harrison JJ, Turner RJ, Joo DA et al. Copper and Quaternary Ammonium Cations Exert Synergistic. Antimicrobial Agents and Chemotherapy 2008; 52: 2870-81.
  • 23. Costerton JW. Biofilm theory can guide the treatment of device related orthopaedic infections. Clinical Orthopaedics Related Research. 2005; 437: 7-11.
  • 24. Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environmental Microbiology. 2004; 6: 1220–27.

Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi

Year 2018, Volume: 9 Issue: 1, 13 - 18, 01.03.2018
https://doi.org/10.18663/tjcl.300359

Abstract

Amaç: Antibiyotik direnci kolaylıkla geliştiğinden beri, yeni,
alternatif antimikrobiyal ve antibiyofilm ajan keşfi dikkat çekmektedir.
Metallerin antimikrobiyal aktivitelere sahip olduğu kabul edilmiştir.
Bakır ile emdirilmiş ortopedik implantlar gibi abiyotik yüzeyler, biyofilm
üreten patojenlerin kolonizasyonunu önleyebilir ve implant üzerinde oluşturulan
biyofilmleri ayırabilir. Bu çalışmada, bakırın planktonik bakteriler ve
kirschner teli ortopedik
implantı üzerine yapışan
biyofilme gömülü bakterilere karşı etkisi
çalışıldı.

Gereç ve Yöntemler: Kirschner teli ortopedik implant üzerinde kolonize olan metisilin
dirençli Staphylococcus aureus (MRSA), metisilin duyarlı Staphylococcus aureus (MSSA), metisilin dirençli
Staphylococcus epidermidis
(MRSE), metisilin duyarlı
Staphylococcus epidermidis (MSSE), Escherichia
coli
(E. coli),
Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P.
aeruginosa
), Proteus mirabilis (P. mirabilis) gibi ana
biyofilm oluşturan patojenler üzerinde bakırın MIK, MBK ve MBEK değerleri
belirlendi.

Bulgular: Bakırın, patojenlere karşı MIK, MBK ve MBEK
değerleri
0.063 - 0.75 mg/mL arasında değişmektedir. Bu
çalışma, 0.75 mg/mL bakırın çalışmada analiz edilen tüm izolatları inhibe
ettiğini göstermiştir. En dirençli patojen MRSA idi. Bakırın biyofilme gömülü
bakteriler ve planktonik bakteriler üzerindeki aktivitesi aynıydı.







Sonuç: Ortopedik
teller, protezler gibi yabancı
medikal cisimler, yabancı cisimler üzerinde kolonizasyon ve olgun biyofilm
oluşturulmasını önlemek için bakır ile emdirilebilir.

References

  • 1. Kırmusaoğlu S. Staphylococcal biofilms: Pathogenicity, mechanism and regulation of biofilm formation by quorum sensing system and antibiotic resistance mechanisms of biofilm embedded microorganisms. In: Dharumadurai Dhanasekaran and Nooruddin Thajuddin (ed). Microbial Biofilms - Importance and Applications. Croatia, Eastern Europe: Intech; 2016: 189 -209.
  • 2. Bjarnsholt T, Moser C, Jensen P, Hoiby N. Biofilm Infections. New York Dordrecht Heidelberg London: Springer Science Business Media, LLC; 2011: 215-25.
  • 3. Gandelman G, Frishman WH, Wiese C et al. Intravascular device infections: epidemiology, diagnosis, and management. Cardiology Review. 2007; 15: 13-23.
  • 4. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cellular Microbiology. 2009; 11: 1034-43.
  • 5. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002; 15: 167–93.
  • 6. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005; 26: 6984–90.
  • 7. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Current Opinion in Infectious Diseases. 2006; 19: 349–56.
  • 8. Stoodley P, Hall-Stoodley L, Costerton B, DeMeo P, Shirtliff M, Gawalt E, Kathju S. Biofilms, Biomaterials, and Device-Related Infections. In: Modjarrad K and Ebnesajjad S (ed). Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier Inc. 2013: 368.
  • 9. Casey AL, Adams D, Karpanen TJ et al. Role of copper in reducing hospital environment contamination. Journal of Hospital Infection.2010; 74: 72–77.
  • 10. Beeton ML, Aldrich-Wright JR, Bolhuis A. The antimicrobial and antibiofilm activities of copper(II) complexes. Journal of Inorganic Biochemistry. 2014; 140: 167–72.
  • 11. Hans M, Erbe A, Mathews S, Chen Y, Solioz M , Mücklich F. Role of Copper Oxides in Contact Killing of Bacteria. Langmuir. 2013; 29: 16160−66.
  • 12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S23. Wayne PA: Clinical and Laboratory Standards Institute. 2013. 13. Freeman J, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology. 1989; 42: 872-74.
  • 14. Christensen GD, Simpson WA, Younger JJ et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microiology. 1985; 22: 996-1006.
  • 15. Saginur R, Denis MS, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K. Multiple Combination Bactericidal Testing of Staphylococcal Biofilms from Implant-Associated Infections. Antimicrobial Agents and Chemotherapy. 2006; 50: 55-61.
  • 16. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: New Technology for rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. Journal of Clinical Microbiology. 1999; 37: 1771-76. 17. Novick RP. Staphylococcal plasmids and their replication. Annual Review Microbiology. 1989; 43: 537–65.
  • 18. Plata K, Rosato AE, Wegrzyn G. Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica. 2009; 56: 597-612.
  • 19. Reyes-Jara A, Cordero N, Aguirre J, Troncoso M, Figueroa G. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis. Frontiers in Microbiology. 2016; 7: 626.
  • 20. Koseoglu Eser O, Ergin A, Hascelik G. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens. Current Microbiology. 2015; 71: 291–95.
  • 21. Chudzik B, Czernel G, Miaskowski A, Gagoś M. Amphotericin B-copper(II) complex shows improved therapeutic index in vitro. European Journal of Pharmaceutical Sciences. 2017; 97: 9–21.
  • 22. Harrison JJ, Turner RJ, Joo DA et al. Copper and Quaternary Ammonium Cations Exert Synergistic. Antimicrobial Agents and Chemotherapy 2008; 52: 2870-81.
  • 23. Costerton JW. Biofilm theory can guide the treatment of device related orthopaedic infections. Clinical Orthopaedics Related Research. 2005; 437: 7-11.
  • 24. Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environmental Microbiology. 2004; 6: 1220–27.
There are 22 citations in total.

Details

Subjects Health Care Administration
Journal Section Orıgınal Artıcle
Authors

Sahra Kırmusaoğlu

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 9 Issue: 1

Cite

APA Kırmusaoğlu, S. (2018). Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi. Turkish Journal of Clinics and Laboratory, 9(1), 13-18. https://doi.org/10.18663/tjcl.300359
AMA Kırmusaoğlu S. Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi. TJCL. March 2018;9(1):13-18. doi:10.18663/tjcl.300359
Chicago Kırmusaoğlu, Sahra. “Ortopedik Implantlar üzerinde Kolonize Olan Biyofilm üreten Patojenler üzerinde bakırın Bakterisidal Ve Antibiyofilm Aktivitesi”. Turkish Journal of Clinics and Laboratory 9, no. 1 (March 2018): 13-18. https://doi.org/10.18663/tjcl.300359.
EndNote Kırmusaoğlu S (March 1, 2018) Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi. Turkish Journal of Clinics and Laboratory 9 1 13–18.
IEEE S. Kırmusaoğlu, “Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi”, TJCL, vol. 9, no. 1, pp. 13–18, 2018, doi: 10.18663/tjcl.300359.
ISNAD Kırmusaoğlu, Sahra. “Ortopedik Implantlar üzerinde Kolonize Olan Biyofilm üreten Patojenler üzerinde bakırın Bakterisidal Ve Antibiyofilm Aktivitesi”. Turkish Journal of Clinics and Laboratory 9/1 (March 2018), 13-18. https://doi.org/10.18663/tjcl.300359.
JAMA Kırmusaoğlu S. Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi. TJCL. 2018;9:13–18.
MLA Kırmusaoğlu, Sahra. “Ortopedik Implantlar üzerinde Kolonize Olan Biyofilm üreten Patojenler üzerinde bakırın Bakterisidal Ve Antibiyofilm Aktivitesi”. Turkish Journal of Clinics and Laboratory, vol. 9, no. 1, 2018, pp. 13-18, doi:10.18663/tjcl.300359.
Vancouver Kırmusaoğlu S. Ortopedik implantlar üzerinde kolonize olan biyofilm üreten patojenler üzerinde bakırın bakterisidal ve antibiyofilm aktivitesi. TJCL. 2018;9(1):13-8.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.