Research Article
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 8, 0 - 0, 15.12.2019

Abstract

References

  • 1. Ang, B. W. & Liu, F. L. A new energy decomposition method: perfect in decomposition and consistent in aggregation. 26, 537–548 (2001).
  • 2. Hoekstra, R. & Bergh, J. J. C. J. M. Van Der. Comparing structural and index decomposition analysis. 25, 39–64 (2003).
  • 3. Liu, J., Yang, Q., Zhang, Y., Sun, W. & Xu, Y. Analysis of CO2 emissions in China’s manufacturing industry based on extended logarithmic mean division index decomposition. Sustain. (2019) doi:10.3390/su11010226.
  • 4. Ang, B. W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 33, 867–871 (2005).
  • 5. Ang, B. W. & Liu, N. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy 35, 739–742 (2007).
  • 6. Sheinbaum, C., Ozawa, L. & Castillo, D. Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico ’ s iron and steel industry. Energy Econ. 32, 1337–1344 (2010).
  • 7. Olanrewaju, O. A. Energy consumption in South African industry : A decomposition analysis using the LMDI approach. (2018) doi:10.1177/0958305X17745364.
  • 8. Cansino, M. & Rodas, A. Analysis of the main drivers of CO 2 emissions changes in Colombia ( 1990 e 2012 ) and its political implications. 116, 402–411 (2018).
  • 9. Zhang, M., Mu, H., Ning, Y. & Song, Y. Decomposition of energy-related CO2 emission over 1991-2006 in China. Ecol. Econ. 68, 2122–2128 (2009).
  • 10. Ma, L. et al. LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams : The Method and an Application to China. doi:10.3390/su10020344.
  • 11. Xu, S.-C., He, Z.-X. & Long, R.-Y. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 115, (2015).
  • 12. Wang, F. et al. Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014. (2017) doi:10.3390/su9020274.
  • 13. Wang, Z., Zhao, L., Mao, G. & Wu, B. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China. 9973–9988 (2015) doi:10.3390/su7089973.
  • 14. Dong, J., Deng, C., Wang, X. & Zhang, X. Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China. 1–17 (2005) doi:10.3390/en9090680.
  • 15. Wang, W., Kuang, Y., Huang, N. & Development, S. Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China. 2249–2272 (2011) doi:10.3390/en4122249.
  • 16. Akbostanci, E., Tunç, G. I. & Türüt-Aşik, S. CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Appl. Energy 88, 2273–2278 (2011).
  • 17. Kim, S. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector. (2020) doi:10.3390/su9020202.
  • 18. Jeong, K. & Kim, S. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector. Energy Policy 62, 1245–1253 (2013).
  • 19. Hammond, G. P. & Norman, J. B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 41, 220–227 (2012).
  • 20. Ang, B. W. & Pandiyan, G. Decomposition of energy-induced CO 2 emissions in manufacturing. 19, 363–374 (1997).
  • 21. Schipper, L. et al. Carbon emissions from manufacturing energy use in 13 IEA countries : long-term trends through 1995. 29, 667–688 (2001).
  • 22. Freitas, L. C. De & Kaneko, S. Decomposing the decoupling of CO 2 emissions and economic growth in Brazil. Ecol. Econ. 70, 1459–1469 (2011).
  • 23. Ipek Tunç, G., Türüt-Aşik, S. & Akbostanci, E. A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy 37, 4689–4699 (2009).
  • 24. Akbostancı, E., Tunç, G. İ. & Türüt-Aşık, S. Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renew. Sustain. Energy Rev. 81, 2599–2608 (2018).
  • 25. Lise, W. Decomposition of CO 2 emissions over 1980-2003 in Turkey. Energy Policy 34, 1841–1852 (2006).
  • 26. Mahony, T. O. Decomposition of Ireland ’ s carbon emissions from 1990 to 2010 : An extended Kaya identity. Energy Policy 59, 573–581 (2013).
  • 27. Cansino, J. M., Sánchez-Braza, A. & Rodríguez-Arévalo, M. L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renewable and Sustainable Energy Reviews (2015) doi:10.1016/j.rser.2015.04.011.
  • 28. Kopidou, D., Tsakanikas, A. & Diakoulaki, D. Common trends and drivers of CO2 emissions and employment : a decomposition analysis in the industrial sector of selected European Union countries. J. Clean. Prod. 112, 4159–4172 (2020).
  • 29. Karmellos, M., Kopidou, D. & Diakoulaki, D. A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries. Energy 94, (2016).
  • 30. Jiang, X., Dong, J., Wang, X. & Li, R. The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA. (2005) doi:10.3390/su8090857.
  • 31. Jiang, X. & Li, R. Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States. Sustainability 886 (2017) doi:10.3390/su9060886.
  • 32. Hatzigeorgiou, E., Polatidis, H. & Haralambopoulos, D. CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy 33, 492–499 (2008).
  • 33. Sumabat, A. K. et al. Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation. Appl. Energy 164, 795–804 (2016).
  • 34. Achour, H. & Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 52, 64–71 (2016).
  • 35. Paul, S. & Bhattacharya, R. N. CO2 emission from energy use in India: A decomposition analysis. Energy Policy 32, 585–593 (2004).
  • 36. Emodi, N. V. & Boo, K. J. Decomposition analysis of CO2 emissions from electricity generation in Nigeria. Int. J. Energy Econ. Policy 5, 565–573 (2015).
  • 37. González, D. & Martínez, M. Decomposition analysis of CO2 emissions in the Mexican industrial sector. Energy Sustain. Dev. 16, 204–215 (2012).

Log- Mean Divisia Index Method

Year 2019, Volume: 4 Issue: 8, 0 - 0, 15.12.2019

Abstract

A new method of energy decomposition called Log- Divisia Index Method I (LMDI I) is presented. It has the desirable characteristics of perfect decomposition and aggregation consistency. Perfect decomposition guarantees that the results of the decomposition do not include a residual period. Consistency in aggregation allows sub-group estimates to be aggregated in a consistent manner [1]. To analyze and understand historical changes in economic, environmental, employment or other socio-economic indicators, it is useful to assess the driving forces or determinants that underlie these changes. Index decomposition analysis has been used to analyze changes in indicators such as energy use, CO2-emissions, labor demand and value added. The changes in these variables are decomposed into determinants such as technological, demand, and structural effects. LMDI uses aggregate data at the sector-level. The IDA method has developed quite independently, which has resulted in method being characterized by specific, unique techniques and approaches [2].

References

  • 1. Ang, B. W. & Liu, F. L. A new energy decomposition method: perfect in decomposition and consistent in aggregation. 26, 537–548 (2001).
  • 2. Hoekstra, R. & Bergh, J. J. C. J. M. Van Der. Comparing structural and index decomposition analysis. 25, 39–64 (2003).
  • 3. Liu, J., Yang, Q., Zhang, Y., Sun, W. & Xu, Y. Analysis of CO2 emissions in China’s manufacturing industry based on extended logarithmic mean division index decomposition. Sustain. (2019) doi:10.3390/su11010226.
  • 4. Ang, B. W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 33, 867–871 (2005).
  • 5. Ang, B. W. & Liu, N. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy 35, 739–742 (2007).
  • 6. Sheinbaum, C., Ozawa, L. & Castillo, D. Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico ’ s iron and steel industry. Energy Econ. 32, 1337–1344 (2010).
  • 7. Olanrewaju, O. A. Energy consumption in South African industry : A decomposition analysis using the LMDI approach. (2018) doi:10.1177/0958305X17745364.
  • 8. Cansino, M. & Rodas, A. Analysis of the main drivers of CO 2 emissions changes in Colombia ( 1990 e 2012 ) and its political implications. 116, 402–411 (2018).
  • 9. Zhang, M., Mu, H., Ning, Y. & Song, Y. Decomposition of energy-related CO2 emission over 1991-2006 in China. Ecol. Econ. 68, 2122–2128 (2009).
  • 10. Ma, L. et al. LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams : The Method and an Application to China. doi:10.3390/su10020344.
  • 11. Xu, S.-C., He, Z.-X. & Long, R.-Y. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 115, (2015).
  • 12. Wang, F. et al. Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014. (2017) doi:10.3390/su9020274.
  • 13. Wang, Z., Zhao, L., Mao, G. & Wu, B. Factor Decomposition Analysis of Energy-Related CO2 Emissions in Tianjin, China. 9973–9988 (2015) doi:10.3390/su7089973.
  • 14. Dong, J., Deng, C., Wang, X. & Zhang, X. Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China. 1–17 (2005) doi:10.3390/en9090680.
  • 15. Wang, W., Kuang, Y., Huang, N. & Development, S. Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China. 2249–2272 (2011) doi:10.3390/en4122249.
  • 16. Akbostanci, E., Tunç, G. I. & Türüt-Aşik, S. CO2 emissions of Turkish manufacturing industry: A decomposition analysis. Appl. Energy 88, 2273–2278 (2011).
  • 17. Kim, S. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector. (2020) doi:10.3390/su9020202.
  • 18. Jeong, K. & Kim, S. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector. Energy Policy 62, 1245–1253 (2013).
  • 19. Hammond, G. P. & Norman, J. B. Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 41, 220–227 (2012).
  • 20. Ang, B. W. & Pandiyan, G. Decomposition of energy-induced CO 2 emissions in manufacturing. 19, 363–374 (1997).
  • 21. Schipper, L. et al. Carbon emissions from manufacturing energy use in 13 IEA countries : long-term trends through 1995. 29, 667–688 (2001).
  • 22. Freitas, L. C. De & Kaneko, S. Decomposing the decoupling of CO 2 emissions and economic growth in Brazil. Ecol. Econ. 70, 1459–1469 (2011).
  • 23. Ipek Tunç, G., Türüt-Aşik, S. & Akbostanci, E. A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy 37, 4689–4699 (2009).
  • 24. Akbostancı, E., Tunç, G. İ. & Türüt-Aşık, S. Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renew. Sustain. Energy Rev. 81, 2599–2608 (2018).
  • 25. Lise, W. Decomposition of CO 2 emissions over 1980-2003 in Turkey. Energy Policy 34, 1841–1852 (2006).
  • 26. Mahony, T. O. Decomposition of Ireland ’ s carbon emissions from 1990 to 2010 : An extended Kaya identity. Energy Policy 59, 573–581 (2013).
  • 27. Cansino, J. M., Sánchez-Braza, A. & Rodríguez-Arévalo, M. L. Driving forces of Spain’s CO2 emissions: A LMDI decomposition approach. Renewable and Sustainable Energy Reviews (2015) doi:10.1016/j.rser.2015.04.011.
  • 28. Kopidou, D., Tsakanikas, A. & Diakoulaki, D. Common trends and drivers of CO2 emissions and employment : a decomposition analysis in the industrial sector of selected European Union countries. J. Clean. Prod. 112, 4159–4172 (2020).
  • 29. Karmellos, M., Kopidou, D. & Diakoulaki, D. A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries. Energy 94, (2016).
  • 30. Jiang, X., Dong, J., Wang, X. & Li, R. The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA. (2005) doi:10.3390/su8090857.
  • 31. Jiang, X. & Li, R. Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States. Sustainability 886 (2017) doi:10.3390/su9060886.
  • 32. Hatzigeorgiou, E., Polatidis, H. & Haralambopoulos, D. CO2 emissions in Greece for 1990-2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques. Energy 33, 492–499 (2008).
  • 33. Sumabat, A. K. et al. Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation. Appl. Energy 164, 795–804 (2016).
  • 34. Achour, H. & Belloumi, M. Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method. Transp. Policy 52, 64–71 (2016).
  • 35. Paul, S. & Bhattacharya, R. N. CO2 emission from energy use in India: A decomposition analysis. Energy Policy 32, 585–593 (2004).
  • 36. Emodi, N. V. & Boo, K. J. Decomposition analysis of CO2 emissions from electricity generation in Nigeria. Int. J. Energy Econ. Policy 5, 565–573 (2015).
  • 37. González, D. & Martínez, M. Decomposition analysis of CO2 emissions in the Mexican industrial sector. Energy Sustain. Dev. 16, 204–215 (2012).
There are 37 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Articles
Authors

Abdulkadir Bektaş

Publication Date December 15, 2019
Submission Date September 18, 2019
Acceptance Date December 1, 2019
Published in Issue Year 2019 Volume: 4 Issue: 8

Cite

APA Bektaş, A. (2019). Log- Mean Divisia Index Method. Turkish Journal of Energy Policy, 4(8).
AMA Bektaş A. Log- Mean Divisia Index Method. TJEP. December 2019;4(8).
Chicago Bektaş, Abdulkadir. “Log- Mean Divisia Index Method”. Turkish Journal of Energy Policy 4, no. 8 (December 2019).
EndNote Bektaş A (December 1, 2019) Log- Mean Divisia Index Method. Turkish Journal of Energy Policy 4 8
IEEE A. Bektaş, “Log- Mean Divisia Index Method”, TJEP, vol. 4, no. 8, 2019.
ISNAD Bektaş, Abdulkadir. “Log- Mean Divisia Index Method”. Turkish Journal of Energy Policy 4/8 (December 2019).
JAMA Bektaş A. Log- Mean Divisia Index Method. TJEP. 2019;4.
MLA Bektaş, Abdulkadir. “Log- Mean Divisia Index Method”. Turkish Journal of Energy Policy, vol. 4, no. 8, 2019.
Vancouver Bektaş A. Log- Mean Divisia Index Method. TJEP. 2019;4(8).