Research Article
BibTex RIS Cite

Çankırı Acıçay-Tatlıçay Havzalarında arazi kullanım türlerinin Bayes Ağları yöntemiyle tahmin edilmesi

Year 2017, Volume: 18 Issue: 3, 212 - 218, 30.11.2017
https://doi.org/10.18182/tjf.315398

Abstract

Son yıllarda küresel ısınma ve iklim değişikliğinin dereler
üzerindeki rejim bozukluğunu ortaya çıkardığı uzmanlar tarafından tespit
edilmiştir. Bu rejim bozuklukları dere, ırmak ve nehirlerin
hidromorfolojilerinde de değişimlere sebep olarak zaman zaman sel ve
taşkınların oluşmasına sebep olmaktadır. Özellikle yarı-kurak havzalarda bölge
yapısının ve özelliklerinin bilinmesi muhtemel felaketleri engellemede önemli
bir faktördür. Bu çalışmanın amacı, Çankırı ilinde bulunan Tatlıçay ve Acıçay
havzalarında belirlenmiş 513 noktadaki ölçümler ile derelerdeki hidromorfolojik
yapının belirlenmesi, arazi kullanma türünün (AKT) hangi parametrelere göre
değiştiğinin incelenmesi ve arazi yapısının tahmin edilmesidir. Bu amaçla dört
farklı Bayes Ağ senaryosu belirlenmiştir. Bu senaryolarda, farklı parametreler
belirlendiğinde AKT’nin yüzde kaç olasılıkla tahmin edildiği saptanmıştır. Bu
sonuçlara göre en yüksek olasılıkla belirlenen AKT tipi iğne yapraklı orman
olup, bu oran %97 olarak bulunmuştur.

References

  • Aalders, I. 2008. Modeling land-use decision behavior with Bayesian belief networks. Ecology and Society, 13(1). Ames, D.P., Neilson, B.T., Stevens, D.K., Lall, U., 2005. Using Bayesian networks to model watershed management decisions: an East Canyon Creek case study. Journal of Hydroinformatics, 7(4): 267-282.
  • Briassoulis, H. 2000. Analysis of land use change: theoretical and modeling approaches. Regional Research Institute, West Virginia University.
  • Brown, L.E., Hannah, D.M., Milner, A.M. 2009. ARISE: a classification tool for Alpine River and Stream Ecosystem. Freshwater Biology, 54-6. London. DOI: 10.1111/j.1365-2427.2008.02161.x
  • Dodkins, I., Rippey, B., Harrington, T.J., Bradley, C., Chathain, B.N., Kelly-Quinn, M., McGarrigle, M., Hodge, S., Trigg, D. 2005. Developing an optimal river typology for biological elements within the Water Framework Directive. Water Research, 39-15. DOI:10.1016/j.watres.2005.06.008
  • Fogg, J., Wells, G. 1998. Stream corridor restoration: Principles, processes and practices. Federal Interagency Stream Restoration Working Group. Washington D.C.
  • Friedman, N., Nachman, I., Peéer D., 1999. Learning Bayesian Network Structure fromMassive Datasets: The “Sparse Candidate” Algorithm. Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence (UAI).
  • Frissell, C.A., Liss, W.J., Warren, C.E., Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10(2):199-214. DOI:10.1007/BF01867358
  • Gooseff, M.N., R.O. Hall, Jr., J.L., Tank. 2007. Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour. Res., 43, W01417, doi:10.1029/2005WR004626.
  • Harvey, J.W., Conklin, M.H., Koelsch, R.S., 2003. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Advances in Water Resources, 26: 939–950. https://doi.org/10.1016/S0309-1708(03)00085-X.
  • Huang, J., Zhan, J., Yan, H., Wu, F., Deng, X., 2013. Evaluation of the impacts of land use on Water Quality: A case study in the Chaohu Lake Basin. The Scientific World Journal, Jul 22;2013:329187. doi: 10.1155/2013/329187
  • Knighton, A.D., 1998. Fluvial Forms and Processes: A New Perspective, Arnold, London., 383 p., ill., tabl, pl., 15, 5 x 23, 5 cm. ISBN 0 340 66313 8.
  • Kondolf, G.M., Montgomery, D.R., Piegay, H., Schmitt, L., 2003. Geomorphic Classification of Rivers and Streams. In: Kondolf, G.M., Piegay, H. Tools in fluvial geomorphology. London
  • Lenormand, M., Picornell, M., Cantú-Ros, O. G., Louail, T., Herranz, R., Barthelemy, M., Ramasco, J.J., 2015. Comparing and modelling land use organization in cities. Royal Society open science, 2(12): 150449.
  • Murphy, K. 1998. A brief introduction to graphical models and Bayesian networks. http://www.cs.ubc.ca/ ∼murphyk/Bayes/bnintro.html. Earlier version appears at Murphy K. (2001) The Bayes Net Toolbox for Matlab, Computing Science and Statistics, 33, 2001.Naiman, R.J., Lonzarich, D.G., Beechie, T.J., Ralph, S.C. 1992. General principles of classification and the assessment of conservation potential in rivers. In: Boon, P.J., Calow, P., Pets, G.E. River conservation and management. New York.
  • Overmars, K.P., Verburg, P.H., 2006. Multilevel modelling of land use from field to village level in the Philippines. Agricultural Systems, 89(2): 435-456.
  • Rosgen, D., 1996. Applied River Morphology. Pagosa Springs.
  • Salehin, M., Packman, A.I., Wörman, A., 2003. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Adv. Water Resour., 26: 951–964. https://doi.org/10.1016/S0309-1708(03)00084-8
  • Serengil, Y., İnan, M., Yurtseven, İ., Kılıç, Ü., Uygur, B., 2012. Stream corridors as indicators of watershed land use: A case study in Istanbul. Bosque, 33(3): 345-352.
  • Shields, F.D., Langendoen, E.J., Doyle, M.W., 2006. Adapting existing models to examine effects of agricultural conservation programs on stream habitat quality. Journal of the American Water Resources Association, 42: 25–33. doi:10.1111/j.1752-1688.2006.tb03820.x
  • Uriarte, M., Yackulic, C.B., Lim, Y., Nazario, J.A.A., 2011. Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landscape Ecol ogy., 26: 1151. doi:10.1007/s10980-011-9642-y
  • Varis, O., 1997. Bayesian decision analysis for environmental and resource management. Environmental Modelling & Software, 12(2): 177-185.
  • Waddell, P., Ulfarsson, G.F., 2004. Introduction to urban simulation: Design and development of operational models. In Handbook of transport geography and spatial systems (pp. 203-236). Emerald Group Publishing Limited.
  • Yu, S., Xu, Z., Wu, W., Zuo, D., 2016. Effect of land use types on stream water quality under seasonal variation and topographic characteristics in the Wei River basin, China. Ecological Indicators, Volume 60, January 202–212. https://doi.org/10.1016/j.ecolind.2015.06.029.

Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay

Year 2017, Volume: 18 Issue: 3, 212 - 218, 30.11.2017
https://doi.org/10.18182/tjf.315398

Abstract

In recent years, experts have identified that climate change
and global warming affects stream flow regime. These changes cause floods and
erosion in creeks, streams, rivers etc. Especially in semi-arid watersheds, the
structure of the land usage type is an important factor in preventing possible
disasters. The aim of this study is to determine watershed land usage type by
using hydro-morphological structure of stream and some physical water quality
parameters. To do so, hydro-morphological observations and some physical water
quality parameters were collected from 513 different points in Acıçay and
Tatlıçay watershed. For this purpose, four different Bayesian network scenarios
were considered to see the changes in the type of the land use. In this scenario,
the prediction probability of the watershed land usage type was determined with
different parameters. In conclusion, coniferous forest was predicted with the
highest probability rate of %97.

References

  • Aalders, I. 2008. Modeling land-use decision behavior with Bayesian belief networks. Ecology and Society, 13(1). Ames, D.P., Neilson, B.T., Stevens, D.K., Lall, U., 2005. Using Bayesian networks to model watershed management decisions: an East Canyon Creek case study. Journal of Hydroinformatics, 7(4): 267-282.
  • Briassoulis, H. 2000. Analysis of land use change: theoretical and modeling approaches. Regional Research Institute, West Virginia University.
  • Brown, L.E., Hannah, D.M., Milner, A.M. 2009. ARISE: a classification tool for Alpine River and Stream Ecosystem. Freshwater Biology, 54-6. London. DOI: 10.1111/j.1365-2427.2008.02161.x
  • Dodkins, I., Rippey, B., Harrington, T.J., Bradley, C., Chathain, B.N., Kelly-Quinn, M., McGarrigle, M., Hodge, S., Trigg, D. 2005. Developing an optimal river typology for biological elements within the Water Framework Directive. Water Research, 39-15. DOI:10.1016/j.watres.2005.06.008
  • Fogg, J., Wells, G. 1998. Stream corridor restoration: Principles, processes and practices. Federal Interagency Stream Restoration Working Group. Washington D.C.
  • Friedman, N., Nachman, I., Peéer D., 1999. Learning Bayesian Network Structure fromMassive Datasets: The “Sparse Candidate” Algorithm. Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence (UAI).
  • Frissell, C.A., Liss, W.J., Warren, C.E., Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management, 10(2):199-214. DOI:10.1007/BF01867358
  • Gooseff, M.N., R.O. Hall, Jr., J.L., Tank. 2007. Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour. Res., 43, W01417, doi:10.1029/2005WR004626.
  • Harvey, J.W., Conklin, M.H., Koelsch, R.S., 2003. Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Advances in Water Resources, 26: 939–950. https://doi.org/10.1016/S0309-1708(03)00085-X.
  • Huang, J., Zhan, J., Yan, H., Wu, F., Deng, X., 2013. Evaluation of the impacts of land use on Water Quality: A case study in the Chaohu Lake Basin. The Scientific World Journal, Jul 22;2013:329187. doi: 10.1155/2013/329187
  • Knighton, A.D., 1998. Fluvial Forms and Processes: A New Perspective, Arnold, London., 383 p., ill., tabl, pl., 15, 5 x 23, 5 cm. ISBN 0 340 66313 8.
  • Kondolf, G.M., Montgomery, D.R., Piegay, H., Schmitt, L., 2003. Geomorphic Classification of Rivers and Streams. In: Kondolf, G.M., Piegay, H. Tools in fluvial geomorphology. London
  • Lenormand, M., Picornell, M., Cantú-Ros, O. G., Louail, T., Herranz, R., Barthelemy, M., Ramasco, J.J., 2015. Comparing and modelling land use organization in cities. Royal Society open science, 2(12): 150449.
  • Murphy, K. 1998. A brief introduction to graphical models and Bayesian networks. http://www.cs.ubc.ca/ ∼murphyk/Bayes/bnintro.html. Earlier version appears at Murphy K. (2001) The Bayes Net Toolbox for Matlab, Computing Science and Statistics, 33, 2001.Naiman, R.J., Lonzarich, D.G., Beechie, T.J., Ralph, S.C. 1992. General principles of classification and the assessment of conservation potential in rivers. In: Boon, P.J., Calow, P., Pets, G.E. River conservation and management. New York.
  • Overmars, K.P., Verburg, P.H., 2006. Multilevel modelling of land use from field to village level in the Philippines. Agricultural Systems, 89(2): 435-456.
  • Rosgen, D., 1996. Applied River Morphology. Pagosa Springs.
  • Salehin, M., Packman, A.I., Wörman, A., 2003. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Adv. Water Resour., 26: 951–964. https://doi.org/10.1016/S0309-1708(03)00084-8
  • Serengil, Y., İnan, M., Yurtseven, İ., Kılıç, Ü., Uygur, B., 2012. Stream corridors as indicators of watershed land use: A case study in Istanbul. Bosque, 33(3): 345-352.
  • Shields, F.D., Langendoen, E.J., Doyle, M.W., 2006. Adapting existing models to examine effects of agricultural conservation programs on stream habitat quality. Journal of the American Water Resources Association, 42: 25–33. doi:10.1111/j.1752-1688.2006.tb03820.x
  • Uriarte, M., Yackulic, C.B., Lim, Y., Nazario, J.A.A., 2011. Influence of land use on water quality in a tropical landscape: a multi-scale analysis. Landscape Ecol ogy., 26: 1151. doi:10.1007/s10980-011-9642-y
  • Varis, O., 1997. Bayesian decision analysis for environmental and resource management. Environmental Modelling & Software, 12(2): 177-185.
  • Waddell, P., Ulfarsson, G.F., 2004. Introduction to urban simulation: Design and development of operational models. In Handbook of transport geography and spatial systems (pp. 203-236). Emerald Group Publishing Limited.
  • Yu, S., Xu, Z., Wu, W., Zuo, D., 2016. Effect of land use types on stream water quality under seasonal variation and topographic characteristics in the Wei River basin, China. Ecological Indicators, Volume 60, January 202–212. https://doi.org/10.1016/j.ecolind.2015.06.029.
There are 23 citations in total.

Details

Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Semih Ediş

Efehan Ulaş

Publication Date November 30, 2017
Acceptance Date July 19, 2017
Published in Issue Year 2017 Volume: 18 Issue: 3

Cite

APA Ediş, S., & Ulaş, E. (2017). Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry, 18(3), 212-218. https://doi.org/10.18182/tjf.315398
AMA Ediş S, Ulaş E. Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry. November 2017;18(3):212-218. doi:10.18182/tjf.315398
Chicago Ediş, Semih, and Efehan Ulaş. “Using Bayesian Network to Predict the Watershed Land Use Type of Çankırı Acıçay-Tatlıçay”. Turkish Journal of Forestry 18, no. 3 (November 2017): 212-18. https://doi.org/10.18182/tjf.315398.
EndNote Ediş S, Ulaş E (November 1, 2017) Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry 18 3 212–218.
IEEE S. Ediş and E. Ulaş, “Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay”, Turkish Journal of Forestry, vol. 18, no. 3, pp. 212–218, 2017, doi: 10.18182/tjf.315398.
ISNAD Ediş, Semih - Ulaş, Efehan. “Using Bayesian Network to Predict the Watershed Land Use Type of Çankırı Acıçay-Tatlıçay”. Turkish Journal of Forestry 18/3 (November 2017), 212-218. https://doi.org/10.18182/tjf.315398.
JAMA Ediş S, Ulaş E. Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry. 2017;18:212–218.
MLA Ediş, Semih and Efehan Ulaş. “Using Bayesian Network to Predict the Watershed Land Use Type of Çankırı Acıçay-Tatlıçay”. Turkish Journal of Forestry, vol. 18, no. 3, 2017, pp. 212-8, doi:10.18182/tjf.315398.
Vancouver Ediş S, Ulaş E. Using Bayesian Network to predict the watershed land use type of Çankırı Acıçay-Tatlıçay. Turkish Journal of Forestry. 2017;18(3):212-8.