Research Article
BibTex RIS Cite

Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi

Year 2021, Volume: 22 Issue: 4, 366 - 370, 30.12.2021
https://doi.org/10.18182/tjf.1001789

Abstract

Küresel iklim değişikliğine bağlı olarak yaz kuraklıklarının süre uzunluğunun ve şiddetinin artması ormanları olumsuz etkileyecek olup, artan kuraklık nedeniyle ağaçların maruz kaldığı kuraklık stresinin tür bazında incelenmesi, türün verdiği tepkinin anlaşılması oldukça önemlidir. Bu çalışmada Quercus trojana P.B. Webb. fidanlarında kuraklık stresinin fizyolojik (gün ortası su potansiyeli, relatif su içeriği, gaz değişim parametreleri) ve biyokimyasal (toplam çözünebilir şeker içeriği) özellikler üzerindeki etkisi araştırılmıştır. Sera koşullarında 1+0 yaşlı fidanlara kontrol (haftada 2-3 kez sulama) ve kuraklık stresi (30 gün susuz bırakma) olmak üzere iki işlem uygulanmıştır. Kuraklık stresi ardışık iki kez tekrar edilmiştir. İki aylık stres döngüsü sonunda kuraklık stresi, gün ortası su potansiyelini, relatif su içeriğini, net fotosentez hızını, stoma iletkenliğini ve terleme oranını düşürürken, su kullanım etkinliğini ve toplam çözünebilir şeker içeriğini arttırmıştır. Çalışmada gün ortası su potansiyeli, net fotosentez hızı, stoma iletkenliği, terleme oranı ve toplam çözünebilir şeker içeriği arasında güçlü ilişkiler tespit edilmiştir.

References

  • Allam, S.M., 1999. Nutrient uptake by plants under stress conditions, In: Handbook of plant and crop stress (Ed:Pessarakli, M.), Marcel Dekker, New York. pp. 285–313.
  • Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9):2026-2032.
  • Barlett, M.K., Scoffoni, C., Sack, L., 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15:393-405.
  • Chaves, M.M., 1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42(234):1-16.
  • Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30:239-264.
  • Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103:551-560.
  • Deligöz, A., Bayar, E., 2018. Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry, 42:114-123.
  • Dubois, M, Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
  • Epron, D., Dreyer, E., Aussenac, G., 1993. A comparison of photosynthetic responses to water stress in seedlings from 3 oak species: Quercus petraea (Matt) Liebl, Q rubra L and Q cerris L. Ann Sci For., 50(1):48-60.
  • Epron, D., Dreyer, E., 1996. Starch and soluble carbohydrates in leaves of water-stressed oak saplings. Ann. Sci. For., 53: 263-268.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29:185-212.
  • Fotelli, M.N., Radoglou, K.M., Constantinidou, H.I.A., 2000. Water stress response of seedlings of four Mediterranean oak species. Tree Physiology, 20:1065-1075.
  • Galeano, E., Vasconcelos, T.S., Novais de Oliveira, P., Carrer, H., 2019. Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). Plos One, 14(9): e0221571.
  • Genç, M., Yahyaoğlu, Z., 2007. Kalite sınıflamasında kullanılan özellikler ve tespiti. Fidan Standardizasyonu, Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları (Ed: Yahyaoğlu, Z., Genç, M.), Süleyman Demirel Üniversitesi Yayınları, Yayın No. 75, Isparta, s:467-491.
  • Holland, V., Koller S., Lukas, S., Brüggemann W., 2016. Drought-and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees, 30:215-226.
  • Jafarnia, S., Akbarinia M., Hosseinpour, B., Modarres Sanavi S.A.M., Salami S.A., 2018. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest, 11: 212-220.
  • Kuster, T.M., Arend, M., Günthardt-Goerg, M.S., Schulin, R., 2013. Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil, 369:61-71.
  • McDowell, N.G., 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155:1051-1059.
  • OGM, 2020. Ormancılık İstatistikleri 2020. Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler. Erişim:01.09.2021
  • Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S., 2014. Response of plants to water stress. Frontiers in Plant Science. 5(86):1-8.
  • Öztürk, S., 2013. Türkiye Meşeleri Teşhis ve Tanı Kılavuzu. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü, Ankara.
  • Peguero-Pina, J.J., Sancho-Knapik, D., Morales F., Flexas, J., Gil-Pelegrín E., 2009. Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Functional Plant Biology, 36: 453-462.
  • Razi, K., Muneer, S., 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41(5):669-691.
  • Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A., 1965. Sap pressure in vascular plants. Science, 148:339-346.
  • Siddique, M.R.B., Hamid, A., Islam, M.S., 2000. Drought stress effects on water relations of wheat. Bot. Bull. Acad.Sin., 41:35-39.
  • Taiz, L., Zeiger E., 2002. Plant Physiology, Third Edition. Sinauer Associates, Inc. Publishers, Sunderland, U.S.A.
  • Turner, N.C., 2018. Turgor maintenance by osmotic adjustments: 40 years of progress. Journal of Experimental Botany, 69 (13):3223-3233.
  • Tüfekçioğlu, A., Tüfekçioğlu, M., 2018. Kuraklık ve orman ekosistem dinamikleri etkileşimi. Türkiye Ormancılık Dergisi, 19(1):103-108.
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevre Bilimleri Dergisi, 4(2):1-32.
  • Williams, D.G., McPherson G.R., Weltzin, J.F., 1999. Stress in Wildland Plants:Implications for ecosystem structure and function. In: Handbook of Plant and Crop Stress (Ed:Pessarakli M.) Marcel Dekker, New York, pp.907-929.
  • Wu, M., Zhang, W.H., Ma, C., Zhou, J.Y., 2013.Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology, 60(5): 681-692.
  • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., Chen, S., 2021. A review on response mechanism of plants to drought stress. Horticulturae, 7:50.
  • Yin, C., Peng, Y., Zang, R., Zhu, Y., Li, C., 2005. Adaptive responses of Populus kangdingensis to drought stress. Physiologia plantarum, 123:445-451.
  • Yin, C.Y., Berninger, F., Li, C.Y., 2006.Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica, 44(1):62-68.
  • Zhang, X., Zang, R., Li, C., 2004. Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Science, 166: 791-797.
  • Zhang, T., Cao, Y., Chen, Y., Liu G., 2015. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continious drought stress. Trees, 29:1837-1849.
  • Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol., 53:247-273.

Impact of drought stress on water potential and gas exchange parameters in Macedonian oak (Quercus trojana P.B. Webb.) seedlings

Year 2021, Volume: 22 Issue: 4, 366 - 370, 30.12.2021
https://doi.org/10.18182/tjf.1001789

Abstract

The increase in the duration and severity of summer droughts due to global climate change will adversely affect forests, and it is very important to examine the drought stress that trees are exposed to as a species due to increasing drought and to understand the response of the species. In this study, the effects of drought stress on physiological (midday water potential, relative water content, gas exchange parameters) and biochemical (total soluble sugar content) characteristics were investigated in Quercus trojana P.B. Webb. seedlings. Under greenhouse conditions, two treatments were applied to 1+0 old seedlings: control (2-3 times a week for watering) and drought stress (no watering for 30 days). Drought stress was repeated twice, consecutively. At the end of the two-month stress cycle, drought stress decreased the midday water potential, relative water content, net photosynthesis rate, stomatal conductance and transpiration rate, while increasing the water use efficiency and total soluble sugar content. In the study, strong relationships were found between midday water potential, net photosynthesis rate, stomatal conductance, transpiration rate and total soluble sugar content.

References

  • Allam, S.M., 1999. Nutrient uptake by plants under stress conditions, In: Handbook of plant and crop stress (Ed:Pessarakli, M.), Marcel Dekker, New York. pp. 285–313.
  • Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9):2026-2032.
  • Barlett, M.K., Scoffoni, C., Sack, L., 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15:393-405.
  • Chaves, M.M., 1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42(234):1-16.
  • Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30:239-264.
  • Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103:551-560.
  • Deligöz, A., Bayar, E., 2018. Drought stress responses of seedlings of two oak species (Quercus cerris and Quercus robur). Turkish Journal of Agriculture and Forestry, 42:114-123.
  • Dubois, M, Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
  • Epron, D., Dreyer, E., Aussenac, G., 1993. A comparison of photosynthetic responses to water stress in seedlings from 3 oak species: Quercus petraea (Matt) Liebl, Q rubra L and Q cerris L. Ann Sci For., 50(1):48-60.
  • Epron, D., Dreyer, E., 1996. Starch and soluble carbohydrates in leaves of water-stressed oak saplings. Ann. Sci. For., 53: 263-268.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29:185-212.
  • Fotelli, M.N., Radoglou, K.M., Constantinidou, H.I.A., 2000. Water stress response of seedlings of four Mediterranean oak species. Tree Physiology, 20:1065-1075.
  • Galeano, E., Vasconcelos, T.S., Novais de Oliveira, P., Carrer, H., 2019. Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). Plos One, 14(9): e0221571.
  • Genç, M., Yahyaoğlu, Z., 2007. Kalite sınıflamasında kullanılan özellikler ve tespiti. Fidan Standardizasyonu, Standart Fidan Yetiştirmenin Biyolojik ve Teknik Esasları (Ed: Yahyaoğlu, Z., Genç, M.), Süleyman Demirel Üniversitesi Yayınları, Yayın No. 75, Isparta, s:467-491.
  • Holland, V., Koller S., Lukas, S., Brüggemann W., 2016. Drought-and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees, 30:215-226.
  • Jafarnia, S., Akbarinia M., Hosseinpour, B., Modarres Sanavi S.A.M., Salami S.A., 2018. Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. iForest, 11: 212-220.
  • Kuster, T.M., Arend, M., Günthardt-Goerg, M.S., Schulin, R., 2013. Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil, 369:61-71.
  • McDowell, N.G., 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155:1051-1059.
  • OGM, 2020. Ormancılık İstatistikleri 2020. Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler. Erişim:01.09.2021
  • Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S., 2014. Response of plants to water stress. Frontiers in Plant Science. 5(86):1-8.
  • Öztürk, S., 2013. Türkiye Meşeleri Teşhis ve Tanı Kılavuzu. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü, Ankara.
  • Peguero-Pina, J.J., Sancho-Knapik, D., Morales F., Flexas, J., Gil-Pelegrín E., 2009. Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Functional Plant Biology, 36: 453-462.
  • Razi, K., Muneer, S., 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology, 41(5):669-691.
  • Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A., 1965. Sap pressure in vascular plants. Science, 148:339-346.
  • Siddique, M.R.B., Hamid, A., Islam, M.S., 2000. Drought stress effects on water relations of wheat. Bot. Bull. Acad.Sin., 41:35-39.
  • Taiz, L., Zeiger E., 2002. Plant Physiology, Third Edition. Sinauer Associates, Inc. Publishers, Sunderland, U.S.A.
  • Turner, N.C., 2018. Turgor maintenance by osmotic adjustments: 40 years of progress. Journal of Experimental Botany, 69 (13):3223-3233.
  • Tüfekçioğlu, A., Tüfekçioğlu, M., 2018. Kuraklık ve orman ekosistem dinamikleri etkileşimi. Türkiye Ormancılık Dergisi, 19(1):103-108.
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevre Bilimleri Dergisi, 4(2):1-32.
  • Williams, D.G., McPherson G.R., Weltzin, J.F., 1999. Stress in Wildland Plants:Implications for ecosystem structure and function. In: Handbook of Plant and Crop Stress (Ed:Pessarakli M.) Marcel Dekker, New York, pp.907-929.
  • Wu, M., Zhang, W.H., Ma, C., Zhou, J.Y., 2013.Changes in morphological, physiological, and biochemical responses to different levels of drought stress in Chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology, 60(5): 681-692.
  • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., Chen, S., 2021. A review on response mechanism of plants to drought stress. Horticulturae, 7:50.
  • Yin, C., Peng, Y., Zang, R., Zhu, Y., Li, C., 2005. Adaptive responses of Populus kangdingensis to drought stress. Physiologia plantarum, 123:445-451.
  • Yin, C.Y., Berninger, F., Li, C.Y., 2006.Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica, 44(1):62-68.
  • Zhang, X., Zang, R., Li, C., 2004. Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Science, 166: 791-797.
  • Zhang, T., Cao, Y., Chen, Y., Liu G., 2015. Non-structural carbohydrate dynamics in Robinia pseudoacacia saplings under three levels of continious drought stress. Trees, 29:1837-1849.
  • Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol., 53:247-273.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Ayşe Deligöz 0000-0001-6107-7464

Esra Bayar 0000-0003-1137-297X

Publication Date December 30, 2021
Acceptance Date December 2, 2021
Published in Issue Year 2021 Volume: 22 Issue: 4

Cite

APA Deligöz, A., & Bayar, E. (2021). Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi. Turkish Journal of Forestry, 22(4), 366-370. https://doi.org/10.18182/tjf.1001789
AMA Deligöz A, Bayar E. Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi. Turkish Journal of Forestry. December 2021;22(4):366-370. doi:10.18182/tjf.1001789
Chicago Deligöz, Ayşe, and Esra Bayar. “Makedonya meşesi (Quercus Trojana P.B. Webb.) fidanlarında kuraklık Stresinin Su Potansiyeli Ve Gaz değişim Parametreleri üzerindeki Etkisi”. Turkish Journal of Forestry 22, no. 4 (December 2021): 366-70. https://doi.org/10.18182/tjf.1001789.
EndNote Deligöz A, Bayar E (December 1, 2021) Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi. Turkish Journal of Forestry 22 4 366–370.
IEEE A. Deligöz and E. Bayar, “Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi”, Turkish Journal of Forestry, vol. 22, no. 4, pp. 366–370, 2021, doi: 10.18182/tjf.1001789.
ISNAD Deligöz, Ayşe - Bayar, Esra. “Makedonya meşesi (Quercus Trojana P.B. Webb.) fidanlarında kuraklık Stresinin Su Potansiyeli Ve Gaz değişim Parametreleri üzerindeki Etkisi”. Turkish Journal of Forestry 22/4 (December 2021), 366-370. https://doi.org/10.18182/tjf.1001789.
JAMA Deligöz A, Bayar E. Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi. Turkish Journal of Forestry. 2021;22:366–370.
MLA Deligöz, Ayşe and Esra Bayar. “Makedonya meşesi (Quercus Trojana P.B. Webb.) fidanlarında kuraklık Stresinin Su Potansiyeli Ve Gaz değişim Parametreleri üzerindeki Etkisi”. Turkish Journal of Forestry, vol. 22, no. 4, 2021, pp. 366-70, doi:10.18182/tjf.1001789.
Vancouver Deligöz A, Bayar E. Makedonya meşesi (Quercus trojana P.B. Webb.) fidanlarında kuraklık stresinin su potansiyeli ve gaz değişim parametreleri üzerindeki etkisi. Turkish Journal of Forestry. 2021;22(4):366-70.